圆月山庄资源网 Design By www.vgjia.com
1.一般的模型构造、训练、测试流程
# 模型构造 inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h1 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h1) model = keras.Model(inputs, outputs) # keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) # 载入数据 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(60000, 784).astype('float32') /255 x_test = x_test.reshape(10000, 784).astype('float32') /255 x_val = x_train[-10000:] y_val = y_train[-10000:] x_train = x_train[:-10000] y_train = y_train[:-10000] # 训练模型 history = model.fit(x_train, y_train, batch_size=64, epochs=3, validation_data=(x_val, y_val)) print('history:') print(history.history) result = model.evaluate(x_test, y_test, batch_size=128) print('evaluate:') print(result) pred = model.predict(x_test[:2]) print('predict:') print(pred)
2.自定义损失和指标
自定义指标只需继承Metric类, 并重写一下函数
_init_(self),初始化。
update_state(self,y_true,y_pred,sample_weight = None),它使用目标y_true和模型预测y_pred来更新状态变量。
result(self),它使用状态变量来计算最终结果。
reset_states(self),重新初始化度量的状态。
# 这是一个简单的示例,显示如何实现CatgoricalTruePositives指标,该指标计算正确分类为属于给定类的样本数量 class CatgoricalTruePostives(keras.metrics.Metric): def __init__(self, name='binary_true_postives', **kwargs): super(CatgoricalTruePostives, self).__init__(name=name, **kwargs) self.true_postives = self.add_weight(name='tp', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None): y_pred = tf.argmax(y_pred) y_true = tf.equal(tf.cast(y_pred, tf.int32), tf.cast(y_true, tf.int32)) y_true = tf.cast(y_true, tf.float32) if sample_weight is not None: sample_weight = tf.cast(sample_weight, tf.float32) y_true = tf.multiply(sample_weight, y_true) return self.true_postives.assign_add(tf.reduce_sum(y_true)) def result(self): return tf.identity(self.true_postives) def reset_states(self): self.true_postives.assign(0.) model.compile(optimizer=keras.optimizers.RMSprop(1e-3), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[CatgoricalTruePostives()]) model.fit(x_train, y_train, batch_size=64, epochs=3)
# 以定义网络层的方式添加网络loss class ActivityRegularizationLayer(layers.Layer): def call(self, inputs): self.add_loss(tf.reduce_sum(inputs) * 0.1) return inputs inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h1 = ActivityRegularizationLayer()(h1) h1 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h1) model = keras.Model(inputs, outputs) # keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.fit(x_train, y_train, batch_size=32, epochs=1)
# 也可以以定义网络层的方式添加要统计的metric class MetricLoggingLayer(layers.Layer): def call(self, inputs): self.add_metric(keras.backend.std(inputs), name='std_of_activation', aggregation='mean') return inputs inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h1 = MetricLoggingLayer()(h1) h1 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h1) model = keras.Model(inputs, outputs) # keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.fit(x_train, y_train, batch_size=32, epochs=1)
# 也可以直接在model上面加 # 也可以以定义网络层的方式添加要统计的metric class MetricLoggingLayer(layers.Layer): def call(self, inputs): self.add_metric(keras.backend.std(inputs), name='std_of_activation', aggregation='mean') return inputs inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h2 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h2) model = keras.Model(inputs, outputs) model.add_metric(keras.backend.std(inputs), name='std_of_activation', aggregation='mean') model.add_loss(tf.reduce_sum(h1)*0.1) # keras.utils.plot_model(model, 'net001.png', show_shapes=True) model.compile(optimizer=keras.optimizers.RMSprop(), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.fit(x_train, y_train, batch_size=32, epochs=1)
处理使用validation_data传入测试数据,还可以使用validation_split划分验证数据
ps:validation_split只能在用numpy数据训练的情况下使用
model.fit(x_train, y_train, batch_size=32, epochs=1, validation_split=0.2)
3.使用tf.data构造数据
def get_compiled_model(): inputs = keras.Input(shape=(784,), name='mnist_input') h1 = layers.Dense(64, activation='relu')(inputs) h2 = layers.Dense(64, activation='relu')(h1) outputs = layers.Dense(10, activation='softmax')(h2) model = keras.Model(inputs, outputs) model.compile(optimizer=keras.optimizers.RMSprop(), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) return model model = get_compiled_model() train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_dataset = val_dataset.batch(64) # model.fit(train_dataset, epochs=3) # steps_per_epoch 每个epoch只训练几步 # validation_steps 每次验证,验证几步 model.fit(train_dataset, epochs=3, steps_per_epoch=100, validation_data=val_dataset, validation_steps=3)
4.样本权重和类权重
“样本权重”数组是一个数字数组,用于指定批处理中每个样本在计算总损失时应具有多少权重。 它通常用于不平衡的分类问题(这个想法是为了给予很少见的类更多的权重)。 当使用的权重是1和0时,该数组可以用作损失函数的掩码(完全丢弃某些样本对总损失的贡献)。
“类权重”dict是同一概念的更具体的实例:它将类索引映射到应该用于属于该类的样本的样本权重。 例如,如果类“0”比数据中的类“1”少两倍,则可以使用class_weight = {0:1.,1:0.5}。
# 增加第5类的权重 import numpy as np # 样本权重 model = get_compiled_model() class_weight = {i:1.0 for i in range(10)} class_weight[5] = 2.0 print(class_weight) model.fit(x_train, y_train, class_weight=class_weight, batch_size=64, epochs=4) # 类权重 model = get_compiled_model() sample_weight = np.ones(shape=(len(y_train),)) sample_weight[y_train == 5] = 2.0 model.fit(x_train, y_train, sample_weight=sample_weight, batch_size=64, epochs=4)
# tf.data数据 model = get_compiled_model() sample_weight = np.ones(shape=(len(y_train),)) sample_weight[y_train == 5] = 2.0 train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train, sample_weight)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_dataset = val_dataset.batch(64) model.fit(train_dataset, epochs=3, )
5.多输入多输出模型
image_input = keras.Input(shape=(32, 32, 3), name='img_input') timeseries_input = keras.Input(shape=(None, 10), name='ts_input') x1 = layers.Conv2D(3, 3)(image_input) x1 = layers.GlobalMaxPooling2D()(x1) x2 = layers.Conv1D(3, 3)(timeseries_input) x2 = layers.GlobalMaxPooling1D()(x2) x = layers.concatenate([x1, x2]) score_output = layers.Dense(1, name='score_output')(x) class_output = layers.Dense(5, activation='softmax', name='class_output')(x) model = keras.Model(inputs=[image_input, timeseries_input], outputs=[score_output, class_output]) keras.utils.plot_model(model, 'multi_input_output_model.png' , show_shapes=True)
# 可以为模型指定不同的loss和metrics model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[keras.losses.MeanSquaredError(), keras.losses.CategoricalCrossentropy()]) # 还可以指定loss的权重 model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={'score_output': keras.losses.MeanSquaredError(), 'class_output': keras.losses.CategoricalCrossentropy()}, metrics={'score_output': [keras.metrics.MeanAbsolutePercentageError(), keras.metrics.MeanAbsoluteError()], 'class_output': [keras.metrics.CategoricalAccuracy()]}, loss_weight={'score_output': 2., 'class_output': 1.}) # 可以把不需要传播的loss置0 model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[None, keras.losses.CategoricalCrossentropy()]) # Or dict loss version model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={'class_output': keras.losses.CategoricalCrossentropy()})
6.使用回 调
Keras中的回调是在训练期间(在epoch开始时,batch结束时,epoch结束时等)在不同点调用的对象,可用于实现以下行为:
- 在培训期间的不同时间点进行验证(超出内置的每个时期验证)
- 定期检查模型或超过某个精度阈值
- 在训练似乎平稳时改变模型的学习率
- 在训练似乎平稳时对顶层进行微调
- 在培训结束或超出某个性能阈值时发送电子邮件或即时消息通知等等。
可使用的内置回调有
- ModelCheckpoint:定期保存模型。
- EarlyStopping:当训练不再改进验证指标时停止培训。
- TensorBoard:定期编写可在TensorBoard中显示的模型日志(更多细节见“可视化”)。
- CSVLogger:将丢失和指标数据流式传输到CSV文件。
- 等等
6.1回调使用
model = get_compiled_model() callbacks = [ keras.callbacks.EarlyStopping( # Stop training when `val_loss` is no longer improving monitor='val_loss', # "no longer improving" being defined as "no better than 1e-2 less" min_delta=1e-2, # "no longer improving" being further defined as "for at least 2 epochs" patience=2, verbose=1) ] model.fit(x_train, y_train, epochs=20, batch_size=64, callbacks=callbacks, validation_split=0.2)
# checkpoint模型回调 model = get_compiled_model() check_callback = keras.callbacks.ModelCheckpoint( filepath='mymodel_{epoch}.h5', save_best_only=True, monitor='val_loss', verbose=1 ) model.fit(x_train, y_train, epochs=3, batch_size=64, callbacks=[check_callback], validation_split=0.2)
# 动态调整学习率 initial_learning_rate = 0.1 lr_schedule = keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=10000, decay_rate=0.96, staircase=True ) optimizer = keras.optimizers.RMSprop(learning_rate=lr_schedule)
# 使用tensorboard tensorboard_cbk = keras.callbacks.TensorBoard(log_dir='./full_path_to_your_logs') model.fit(x_train, y_train, epochs=5, batch_size=64, callbacks=[tensorboard_cbk], validation_split=0.2)
6.2创建自己的回调方法
class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs): self.losses = [] def on_epoch_end(self, batch, logs): self.losses.append(logs.get('loss')) print('\nloss:',self.losses[-1]) model = get_compiled_model() callbacks = [ LossHistory() ] model.fit(x_train, y_train, epochs=3, batch_size=64, callbacks=callbacks, validation_split=0.2)
7.自己构造训练和验证循环
# Get the model. inputs = keras.Input(shape=(784,), name='digits') x = layers.Dense(64, activation='relu', name='dense_1')(inputs) x = layers.Dense(64, activation='relu', name='dense_2')(x) outputs = layers.Dense(10, activation='softmax', name='predictions')(x) model = keras.Model(inputs=inputs, outputs=outputs) # Instantiate an optimizer. optimizer = keras.optimizers.SGD(learning_rate=1e-3) # Instantiate a loss function. loss_fn = keras.losses.SparseCategoricalCrossentropy() # Prepare the training dataset. batch_size = 64 train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size) # 自己构造循环 for epoch in range(3): print('epoch: ', epoch) for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): # 开一个gradient tape, 计算梯度 with tf.GradientTape() as tape: logits = model(x_batch_train) loss_value = loss_fn(y_batch_train, logits) grads = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 200 == 0: print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value))) print('Seen so far: %s samples' % ((step + 1) * 64))
# 训练并验证 # Get model inputs = keras.Input(shape=(784,), name='digits') x = layers.Dense(64, activation='relu', name='dense_1')(inputs) x = layers.Dense(64, activation='relu', name='dense_2')(x) outputs = layers.Dense(10, activation='softmax', name='predictions')(x) model = keras.Model(inputs=inputs, outputs=outputs) # Instantiate an optimizer to train the model. optimizer = keras.optimizers.SGD(learning_rate=1e-3) # Instantiate a loss function. loss_fn = keras.losses.SparseCategoricalCrossentropy() # Prepare the metrics. train_acc_metric = keras.metrics.SparseCategoricalAccuracy() val_acc_metric = keras.metrics.SparseCategoricalAccuracy() # Prepare the training dataset. batch_size = 64 train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size) # Prepare the validation dataset. val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_dataset = val_dataset.batch(64) # Iterate over epochs. for epoch in range(3): print('Start of epoch %d' % (epoch,)) # Iterate over the batches of the dataset. for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): with tf.GradientTape() as tape: logits = model(x_batch_train) loss_value = loss_fn(y_batch_train, logits) grads = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # Update training metric. train_acc_metric(y_batch_train, logits) # Log every 200 batches. if step % 200 == 0: print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value))) print('Seen so far: %s samples' % ((step + 1) * 64)) # Display metrics at the end of each epoch. train_acc = train_acc_metric.result() print('Training acc over epoch: %s' % (float(train_acc),)) # Reset training metrics at the end of each epoch train_acc_metric.reset_states() # Run a validation loop at the end of each epoch. for x_batch_val, y_batch_val in val_dataset: val_logits = model(x_batch_val) # Update val metrics val_acc_metric(y_batch_val, val_logits) val_acc = val_acc_metric.result() val_acc_metric.reset_states() print('Validation acc: %s' % (float(val_acc),))
## 添加自己构造的loss, 每次只能看到最新一次训练增加的loss class ActivityRegularizationLayer(layers.Layer): def call(self, inputs): self.add_loss(1e-2 * tf.reduce_sum(inputs)) return inputs inputs = keras.Input(shape=(784,), name='digits') x = layers.Dense(64, activation='relu', name='dense_1')(inputs) # Insert activity regularization as a layer x = ActivityRegularizationLayer()(x) x = layers.Dense(64, activation='relu', name='dense_2')(x) outputs = layers.Dense(10, activation='softmax', name='predictions')(x) model = keras.Model(inputs=inputs, outputs=outputs) logits = model(x_train[:64]) print(model.losses) logits = model(x_train[:64]) logits = model(x_train[64: 128]) logits = model(x_train[128: 192]) print(model.losses)
# 将loss添加进求导中 optimizer = keras.optimizers.SGD(learning_rate=1e-3) for epoch in range(3): print('Start of epoch %d' % (epoch,)) for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): with tf.GradientTape() as tape: logits = model(x_batch_train) loss_value = loss_fn(y_batch_train, logits) # Add extra losses created during this forward pass: loss_value += sum(model.losses) grads = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # Log every 200 batches. if step % 200 == 0: print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value))) print('Seen so far: %s samples' % ((step + 1) * 64))
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
更新日志
2024年11月01日
2024年11月01日
- 群星《时光正好 电视剧影视原声带》[FLAC/分轨][234.11MB]
- 英雄联盟s14韩国队种子怎么排名 s14韩国队种子队伍排名一览
- 英雄联盟s14四强开始时间 英雄联盟s14四强赛程表一览
- 英雄联盟s14四强赛在哪举办 英雄联盟s14半决赛举办地点一览
- 《三国志8重制版》全女将一览
- 《英雄联盟》Faker第七次晋级决赛
- 《历史时代3》下载方法
- EchoVocalEnsemble-Innocence(2024)[WAV]
- BuceadorVoltio-Satelite(2024)[24-48]FLAC
- VilmPribyl-SmetanaDalibor(2024)[24Bit-WAV]
- 高通骁龙8至尊版亮相:性能领先A18 Pro达到40%,更有多项首发
- 2024骁龙峰会:自研Oryon CPU登陆手机、汽车丨骁龙8至尊版、骁龙至尊版汽车平台
- 稀有度拉满!首款小马宝莉背卡引爆网络热梗
- 群星《全糖少爷1 影视原声带》[320K/MP3][98.36MB]
- 群星《全糖少爷1 影视原声带》[FLAC/分轨][420.97MB]