原始需求:
例如有一个列表:
l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
希望把它转换成下面这种形式:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
其实这个非常简单,我将分享三个一行式代码来解决这个问题。
但如果是下面这种不规则的多维列表:
l = [[1, 2], [3, 4], [5, [6, 7, [8, 9]]], 10, [11, [12, 13, [14, 15, [16]]]]]
我们想将它拉平到一维列表:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
又该怎么实现呢?
文末将演示通过递归或栈来实现深度优先遍历策略从而解决这个问题。
使用numpy拉平数组
import numpy as np np.array(l).flatten().tolist()
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
使用python拉平数组
使用numpy数组拉平数组,其实很受限,一旦列表内部每个元素的长度不一致,numpy就不好使了:
l = [[1, 2, 3], [4, 5], [6, 7], [8, 9, 10, 11]] np.array(l).flatten().tolist()
D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
结果:
[[1, 2, 3], [4, 5], [6, 7], [8, 9, 10, 11]]
这时我们可以通过python的itertools来实现高效的操作:
import itertools list(itertools.chain(*l))
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
当然还有一种更高级的操作方法是直接使用sum函数:
sum(l, [])
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
你可能一脸懵逼,为什么sum函数可以实现列表的拉平?下面我翻译一下,这段代码实际做了什么:
result = [] for i in l: result += i result
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
将不规则多维数组拉平到1维
例如,对于下面这个复杂的列表:
l = [[1, 2], [3, 4], [5, [6, 7, [8, 9]]], 10, [11, [12, 13, [14, 15, [16]]]]] l
结果:
[[1, 2], [3, 4], [5, [6, 7, [8, 9]]], 10, [11, [12, 13, [14, 15, [16]]]]]
这样的列表,对于上面的方法来说已经都不好使了,这个时候怎么办呢?
当然对于这种长度不长的列表,我们可以玩点小技巧:
list_str = str(l).replace("[", "").replace("]", "") eval(f"[{list_str}]")
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
当然,使用正则替换更佳:
import re eval(re.sub("(", "", str(l)))
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
原理就是先将这个列表转成普通的字符串,再将所有的[]字符都去掉,再转成单维列表的字符串形式之后,用eval函数进行解析。但这种方式在列表足够长的时候显然是不合适的,会出现效率低下的问题。
深度优先遍历策略拉平多维数组
下面我介绍一个正常的解决这个问题的办法,那就是使用深度优先遍历策略来解决这个问题,当然如果你对拉平的结果没有顺序的要求还可以使用广度优先遍历的策略。
深度优先遍历策略,最简单直接的思路是使用递归来实现:
def flatten(items, result=[]): for item in items: if isinstance(item, list): flatten(item, result) else: result.append(item) result = [] flatten(l, result) result
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
虽然递归可能出现调用栈过多导致性能下降或程序挂掉,但Python可以借助生成器让递归调用变成普通调用:
def flatten(items): for item in items: if isinstance(item, list): yield from flatten(item) else: yield item result = [e for e in flatten(l)] result
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
而如果我们想不使用递归或生成器类递归,可以直接借助一个栈来实现。
为了保证结果是原有的顺序,我们把左端作为栈顶,而数组不适合删除左端的数据,所以可以使用deque来作为栈。
首先,我们需要将原列表转换为deque,下面是处理代码:
from collections import deque stack = deque(l) result = [] while len(stack) != 0: item = stack.popleft() if isinstance(item, list): for e in reversed(item): stack.appendleft(e) else: result.append(item) result
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
如果我们将原列表作为一个右端为栈顶的栈,可以通过向结果左端插入数据来保持原有的顺序:
from collections import deque stack = l.copy() result = deque() while len(stack) != 0: item = stack.pop() if isinstance(item, list): for e in item: stack.append(e) else: result.appendleft(item) result = list(result) result
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
小结
想不到小小的列表拉平还有这么多学问,希望今天的分享能够对让你学有所获。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]