这是借鉴了github上的一个源程序,参考源:https://github.com/lzane/Fingers-Detection-using-OpenCV-and-Python
自己在这个基础上做了一点修改补充后,可以实现手指指尖的检测,并且可以在windows系统下通过判断手指数目,来模拟键盘操作。下面直接上源程序,并做了详细注释,方便理解。
环境:python3.6+opencv3.4.0
代码如下:
import cv2 import numpy as np import copy import math import win32api import win32con # 参数 cap_region_x_begin = 0.5 # 起点/总宽度 cap_region_y_end = 0.8 threshold = 60 # 二值化阈值 blurValue = 41 # 高斯模糊参数 bgSubThreshold = 50 learningRate = 0 # 变量 isBgCaptured = 0 # 布尔类型, 背景是否被捕获 triggerSwitch = False # 如果正确,键盘模拟器将工作 def printThreshold(thr): print("! Changed threshold to " + str(thr)) def removeBG(frame): #移除背景 fgmask = bgModel.apply(frame, learningRate=learningRate) #计算前景掩膜 kernel = np.ones((3, 3), np.uint8) fgmask = cv2.erode(fgmask, kernel, iterations=1) #使用特定的结构元素来侵蚀图像。 res = cv2.bitwise_and(frame, frame, mask=fgmask) #使用掩膜移除静态背景 return res # 相机/摄像头 camera = cv2.VideoCapture(0) #打开电脑自带摄像头,如果参数是1会打开外接摄像头 camera.set(10, 200) #设置视频属性 cv2.namedWindow('trackbar') #设置窗口名字 cv2.resizeWindow("trackbar", 640, 200) #重新设置窗口尺寸 cv2.createTrackbar('threshold', 'trackbar', threshold, 100, printThreshold) #createTrackbar是Opencv中的API,其可在显示图像的窗口中快速创建一个滑动控件,用于手动调节阈值,具有非常直观的效果。 while camera.isOpened(): ret, frame = camera.read() threshold = cv2.getTrackbarPos('threshold', 'trackbar') #返回滑动条上的位置的值(即实时更新阈值) # frame = cv2.cvtColor(frame,cv2.COLOR_RGB2YCrCb) frame = cv2.bilateralFilter(frame, 5, 50, 100) # 双边滤波 frame = cv2.flip(frame, 1) # 翻转 0:沿X轴翻转(垂直翻转) 大于0:沿Y轴翻转(水平翻转) 小于0:先沿X轴翻转,再沿Y轴翻转,等价于旋转180° cv2.rectangle(frame, (int(cap_region_x_begin * frame.shape[1]), 0),(frame.shape[1], int(cap_region_y_end * frame.shape[0])), (0, 0, 255), 2) #画矩形框 frame.shape[0]表示frame的高度 frame.shape[1]表示frame的宽度 注:opencv的像素是BGR顺序 cv2.imshow('original', frame) #经过双边滤波后的初始化窗口 #主要操作 if isBgCaptured == 1: # isBgCaptured == 1 表示已经捕获背景 img = removeBG(frame) #移除背景 img = img[0:int(cap_region_y_end * frame.shape[0]),int(cap_region_x_begin * frame.shape[1]):frame.shape[1]] # 剪切右上角矩形框区域 cv2.imshow('mask', img) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将移除背景后的图像转换为灰度图 blur = cv2.GaussianBlur(gray, (blurValue, blurValue), 0) #加高斯模糊 cv2.imshow('blur', blur) ret, thresh = cv2.threshold(blur, threshold, 255, cv2.THRESH_BINARY) #二值化处理 cv2.imshow('binary', thresh) # get the coutours thresh1 = copy.deepcopy(thresh) _, contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #寻找轮廓 注:这里的'_'用作变量名称,_表示一个变量被指定了名称,但不打算使用。 length = len(contours) maxArea = -1 if length > 0: for i in range(length): # 找到最大的轮廓(根据面积) temp = contours[i] area = cv2.contourArea(temp) #计算轮廓区域面积 if area > maxArea: maxArea = area ci = i res = contours[ci] #得出最大的轮廓区域 hull = cv2.convexHull(res) #得出点集(组成轮廓的点)的凸包 drawing = np.zeros(img.shape, np.uint8) cv2.drawContours(drawing, [res], 0, (0, 255, 0), 2) #画出最大区域轮廓 cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 3) #画出凸包轮廓 moments = cv2.moments(res) # 求最大区域轮廓的各阶矩 center = (int(moments['m10'] / moments['m00']), int(moments['m01'] / moments['m00'])) cv2.circle(drawing, center, 8, (0,0,255), -1) #画出重心 fingerRes = [] #寻找指尖 max = 0; count = 0; notice = 0; cnt = 0 for i in range(len(res)): temp = res[i] dist = (temp[0][0] -center[0])*(temp[0][0] -center[0]) + (temp[0][1] -center[1])*(temp[0][1] -center[1]) #计算重心到轮廓边缘的距离 if dist > max: max = dist notice = i if dist != max: count = count + 1 if count > 40: count = 0 max = 0 flag = False #布尔值 if center[1] < res[notice][0][1]: #低于手心的点不算 continue for j in range(len(fingerRes)): #离得太近的不算 if abs(res[notice][0][0]-fingerRes[j][0]) < 20 : flag = True break if flag : continue fingerRes.append(res[notice][0]) cv2.circle(drawing, tuple(res[notice][0]), 8 , (255, 0, 0), -1) #画出指尖 cv2.line(drawing, center, tuple(res[notice][0]), (255, 0, 0), 2) cnt = cnt + 1 cv2.imshow('output', drawing) print(cnt) if triggerSwitch is True: if cnt >= 3: print(cnt) # app('System Events').keystroke(' ') # simulate pressing blank space win32api.keybd_event(32, 0, 0, 0) # 空格键位码是32 win32api.keybd_event(32, 0, win32con.KEYEVENTF_KEYUP, 0) # 释放空格键 # 输入的键盘值 k = cv2.waitKey(10) if k == 27: # 按下ESC退出 break elif k == ord('b'): # 按下'b'会捕获背景 bgModel = cv2.createBackgroundSubtractorMOG2(0, bgSubThreshold) #Opencv集成了BackgroundSubtractorMOG2用于动态目标检测,用到的是基于自适应混合高斯背景建模的背景减除法。 isBgCaptured = 1 print('!!!Background Captured!!!') elif k == ord('r'): # 按下'r'会重置背景 bgModel = None triggerSwitch = False isBgCaptured = 0 print('!!!Reset BackGround!!!') elif k == ord('n'): triggerSwitch = True print('!!!Trigger On!!!')
运行程序操作:运行程序后,按下键盘的 b 键就可以捕获背景了
运行结果:
注:模拟点击空格键部分并未展示出来,有兴趣的可以尝试一下(按下n键就可以模拟键盘操作了)
补:该程序受光线影响其实较大,只有在单调背景小效果很好。
-------------------补充----------------------
后期再运行该程序的时候发现有一个错误,如下:
原因:opencv版本的原因,在opencv 4.0.0版本后,findContours的返回值只有contours, hierarchy两个参数,不再有三个参数了!
解决办法:
方法一:
更换opencv的版本
方法二:
将代码 _,contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
改为 contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
即可!
以上就是Python实现手势识别的详细内容,更多关于Python 手势识别的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章