圆月山庄资源网 Design By www.vgjia.com
#过滤式特征选择 #根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除 from sklearn.feature_selection import VarianceThreshold x=[[100,1,2,3], [100,4,5,6], [100,7,8,9], [101,11,12,13]] selector=VarianceThreshold(1) #方差阈值值, selector.fit(x) selector.variances_ #展现属性的方差 selector.transform(x)#进行特征选择 selector.get_support(True) #选择结果后,特征之前的索引 selector.inverse_transform(selector.transform(x)) #将特征选择后的结果还原成原始数据 #被剔除掉的数据,显示为0 #单变量特征选择 from sklearn.feature_selection import SelectKBest,f_classif x=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3], [1,1,1,1,1]] y=[0,1,0,1] selector=SelectKBest(score_func=f_classif,k=3)#选择3个特征,指标使用的是方差分析F值 selector.fit(x,y) selector.scores_ #每一个特征的得分 selector.pvalues_ selector.get_support(True) #如果为true,则返回被选出的特征下标,如果选择False,则 #返回的是一个布尔值组成的数组,该数组只是那些特征被选择 selector.transform(x) #包裹时特征选择 from sklearn.feature_selection import RFE from sklearn.svm import LinearSVC #选择svm作为评定算法 from sklearn.datasets import load_iris #加载数据集 iris=load_iris() x=iris.data y=iris.target estimator=LinearSVC() selector=RFE(estimator=estimator,n_features_to_select=2) #选择2个特征 selector.fit(x,y) selector.n_features_ #给出被选出的特征的数量 selector.support_ #给出了被选择特征的mask selector.ranking_ #特征排名,被选出特征的排名为1 #注意:特征提取对于预测性能的提升没有必然的联系,接下来进行比较; from sklearn.feature_selection import RFE from sklearn.svm import LinearSVC from sklearn import cross_validation from sklearn.datasets import load_iris #加载数据 iris=load_iris() X=iris.data y=iris.target #特征提取 estimator=LinearSVC() selector=RFE(estimator=estimator,n_features_to_select=2) X_t=selector.fit_transform(X,y) #切分测试集与验证集 x_train,x_test,y_train,y_test=cross_validation.train_test_split(X,y, test_size=0.25,random_state=0,stratify=y) x_train_t,x_test_t,y_train_t,y_test_t=cross_validation.train_test_split(X_t,y, test_size=0.25,random_state=0,stratify=y) clf=LinearSVC() clf_t=LinearSVC() clf.fit(x_train,y_train) clf_t.fit(x_train_t,y_train_t) print('origin dataset test score:',clf.score(x_test,y_test)) #origin dataset test score: 0.973684210526 print('selected Dataset:test score:',clf_t.score(x_test_t,y_test_t)) #selected Dataset:test score: 0.947368421053 import numpy as np from sklearn.feature_selection import RFECV from sklearn.svm import LinearSVC from sklearn.datasets import load_iris iris=load_iris() x=iris.data y=iris.target estimator=LinearSVC() selector=RFECV(estimator=estimator,cv=3) selector.fit(x,y) selector.n_features_ selector.support_ selector.ranking_ selector.grid_scores_ #嵌入式特征选择 import numpy as np from sklearn.feature_selection import SelectFromModel from sklearn.svm import LinearSVC from sklearn.datasets import load_digits digits=load_digits() x=digits.data y=digits.target estimator=LinearSVC(penalty='l1',dual=False) selector=SelectFromModel(estimator=estimator,threshold='mean') selector.fit(x,y) selector.transform(x) selector.threshold_ selector.get_support(indices=True) #scikitlearn提供了Pipeline来讲多个学习器组成流水线,通常流水线的形式为:将数据标准化, #--》特征提取的学习器————》执行预测的学习器,除了最后一个学习器之后, #前面的所有学习器必须提供transform方法,该方法用于数据转化(如归一化、正则化、 #以及特征提取 #学习器流水线(pipeline) from sklearn.svm import LinearSVC from sklearn.datasets import load_digits from sklearn import cross_validation from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline def test_Pipeline(data): x_train,x_test,y_train,y_test=data steps=[('linear_svm',LinearSVC(C=1,penalty='l1',dual=False)), ('logisticregression',LogisticRegression(C=1))] pipeline=Pipeline(steps) pipeline.fit(x_train,y_train) print('named steps',pipeline.named_steps) print('pipeline score',pipeline.score(x_test,y_test)) if __name__=='__main__': data=load_digits() x=data.data y=data.target test_Pipeline(cross_validation.train_test_split(x,y,test_size=0.25, random_state=0,stratify=y))
以上就是Python进行特征提取的示例代码的详细内容,更多关于Python 特征提取的资料请关注其它相关文章!
标签:
python,特征提取
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年11月02日
2024年11月02日
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章