圆月山庄资源网 Design By www.vgjia.com

NMS 算法在目标检测,目标定位领域有较广泛的应用。

算法原理

非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素。

算法的作用

当算法对一个目标产生了多个候选框的时候,选择 score 最高的框,并抑制其他对于改目标的候选框

python 实现非极大值抑制算法(Non-maximum suppression, NMS)

适用场景

一幅图中有多个目标(如果只有一个目标,那么直接取 score 最高的候选框即可)。

算法的输入

算法对一幅图产生的所有的候选框,以及每个框对应的 score (可以用一个 5 维数组 dets 表示,前 4 维表示四个角的坐标,第 5 维表示分数),阈值 thresh

算法的输出

正确的候选框组(dets 的一个子集)。

细节

  • 起始,设所有的框都没有被抑制,所有框按照 score 从大到小排序。
  • 从第 0 个框(分数最高)开始遍历:对于每一个框,如果该框没有被抑制,就将所有与它 IoU 大于 thresh 的框设为抑制。
  • 返回没被抑制的框。

参考代码

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import numpy as np
cimport numpy as np

cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
  return a if a >= b else b

cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
  return a if a <= b else b

def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
  cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
  cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
  cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
  cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
  cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]

  cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
  cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]

  cdef int ndets = dets.shape[0]
  cdef np.ndarray[np.int_t, ndim=1] suppressed =       np.zeros((ndets), dtype=np.int)

  # nominal indices
  cdef int _i, _j
  # sorted indices
  cdef int i, j
  # temp variables for box i's (the box currently under consideration)
  cdef np.float32_t ix1, iy1, ix2, iy2, iarea
  # variables for computing overlap with box j (lower scoring box)
  cdef np.float32_t xx1, yy1, xx2, yy2
  cdef np.float32_t w, h
  cdef np.float32_t inter, ovr

  keep = []
  for _i in range(ndets):
    i = order[_i]
    if suppressed[i] == 1:
      continue
    keep.append(i)
    ix1 = x1[i]
    iy1 = y1[i]
    ix2 = x2[i]
    iy2 = y2[i]
    iarea = areas[i]
    for _j in range(_i + 1, ndets):
      j = order[_j]
      if suppressed[j] == 1:
        continue
      xx1 = max(ix1, x1[j])
      yy1 = max(iy1, y1[j])
      xx2 = min(ix2, x2[j])
      yy2 = min(iy2, y2[j])
      w = max(0.0, xx2 - xx1 + 1)
      h = max(0.0, yy2 - yy1 + 1)
      inter = w * h
      ovr = inter / (iarea + areas[j] - inter)
      if ovr >= thresh:
        suppressed[j] = 1

  return keep

以上就是python 实现非极大值抑制算法(Non-maximum suppression, NMS)的详细内容,更多关于python 非极大值抑制算法的资料请关注其它相关文章!

标签:
python,非极大值抑制算法,python,NMS算法

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。