网上的关于django-scrapy的介绍比较少,该博客只在本人查资料的过程中学习的,如果不对之处,希望指出改正;
以后的博客可能不会再出关于django相关的点;
人心太浮躁,个人深度不够,只学习了一些皮毛,后面博客只求精,不求多;
希望能坚持下来。加油!
学习点:
- 实现效果
- django与scrapy的创建
- setting中对接的位置和代码段
- scrapy_djangoitem使用
- scrapy数据爬取保存部分
- 数据库设计以及问题部分
- django配置
实现效果:
django与scrapy的创建:
django的创建:
django startproject 项目名称
cd 项目名称 python manage.py startapp appname
例如:
scrapy的创建:
# cd django的根目录下 cd job_hnting scrapy startproject 项目名称 #创建爬虫 scrapy genspider spidername 'www.xxx.com'
例如:
setting的设置:
在scrapy框架中的setting指向django,让django知道有scrapy;
在scrapy中的setting设置;
import os import django #导入 os.environ['DJANGO_SETTINGS_MODULE'] = 'job_hnting.settings' #手动初始化 django.setup()
如:
scrapy_djangoitem使用:
pip install scrapy_djangoitem
该库在scrapy项目下的item中编写引入:
import scrapy # 引入django中app中models文件中的类 from app51.models import app51data # scrapy与django对接的库 from scrapy_djangoitem import DjangoItem class JobprojectItem(DjangoItem): #引用django下的model中的类名 django_model = app51data
数据存储部分对接在后面解释,现在大体框架完整;
scrapy爬取保存部分:
首先编写scrapy爬虫部分:
我们选取的是51招聘网站的数据:
爬取分为三个函数:
- 主函数
- 解析函数
- 总页数函数
51job的反爬手段:
将json的数据格式隐藏在网页结构中,网上教程需要别的库解析(自行了解),
我们的方法是使用正则匹配提取定位到数据部分,使用json库解析:
# 定位数据位置,提取json数据 search_pattern = "window.__SEARCH_RESULT__ = (.*" jsonText = re.search(search_pattern, response.text, re.M | re.S).group(1)
获得关键字总页数:
# 解析json数据 jsonObject = json.loads(jsonText) number = jsonObject['total_page']
在主函数中构造页面url并给到解析函数:
for number in range(1,int(numbers)+1): next_page_url = self.url.format(self.name,number) # print(next_page_url) #构造的Urlcallback到data_parse函数中 yield scrapy.Request(url=next_page_url,callback=self.data_parse)
最后在解析函数中提取需要的数据:
for job_item in jsonObject["engine_search_result"]: items = JobprojectItem() items['job_name'] = job_item['job_name'] items['company_name'] = job_item["company_name"] # 发布时间 items['Releasetime'] = job_item['issuedate'] items['salary'] = job_item['providesalary_text'] items['site'] = job_item['workarea_text'] .......
相关的细节部分需要自己调整,完整代码在 GitHub 中。
数据爬取部分解决后,需要到scrapy项目中的pipline文件保存;
class SeemeispiderPipeline(object): def process_item(self, item, spider): item.save() return item
记得在setting文件中取消掉pipline的注释
设置数据库:
Django配置数据库有两种方法:
方法一:直接在settings.py文件中添加数据库配置信息(个人使用的)
DATABASES = { # 方法一 'default': { 'ENGINE': 'django.db.backends.mysql', # 数据库引擎 'NAME': 'mysite', # 数据库名称 'USER': 'root', # 数据库登录用户名 'PASSWORD': '123', # 密码 'HOST': '127.0.0.1', # 数据库主机IP,如保持默认,则为127.0.0.1 'PORT': 3306, # 数据库端口号,如保持默认,则为3306 } }
方法二:将数据库配置信息存到一个文件中,在settings.py文件中将其引入。
新建数据库配置文件my.cnf(名字随意选择)
[client] database = blog user = blog password = blog host =127.0.0.1 port = 3306 default-character-set = utf8
在settings.py文件中引入my.cnf文件
DATABASES = { # 方法二: 'default': { 'ENGINE': 'django.db.backends.mysql', 'OPTIONS': { 'read_default_file': 'utils/dbs/my.cnf', }, } }
启用Django与mysql的连接
在生产环境中安装pymysql 并且需要在settings.py文件所在包中的 __init__.py
中导入pymysql
import pymysql pymysql.install_as_MySQLdb()
对应前面的item,在spider中编写时按照model设置的即可;;
from django.db import models # Create your models here. #定义app51的数据模型 class app51data(models.Model): #发布时间,长度20 Releasetime = models.CharField(max_length=20) #职位名,长度50 job_name =models.CharField(max_length=50) #薪水 salary = models.CharField(max_length=20) #工作地点 site = models.CharField(max_length=50) #学历水平 education = models.CharField(max_length=20) #公司名称 company_name = models.CharField(max_length=50) #工作经验 Workexperience = models.CharField(max_length=20) #指定表名 class Meta: db_table = 'jobsql51' def __str__(self): return self.job_name
当指定完表名后,在DBMS中只需要创建对应的数据库即可,表名自动创建
每次修改数据库都要进行以下命令:
python manage.py makemigrations python manage.py migrate
到此mysql数据库配置完成
配置数据库时遇到的错误:
Django启动报错:AttributeError: 'str' object has no attribute 'decode'
解决方法:
找到Django安装目录
G:\env\django_job\Lib\site-packages\django\db\backends\mysql\operations.py
编辑operations.py;
将146行的decode修改成encode
def last_executed_query(self, cursor, sql, params): # With MySQLdb, cursor objects have an (undocumented) "_executed" # attribute where the exact query sent to the database is saved. # See MySQLdb/cursors.py in the source distribution. query = getattr(cursor, '_executed', None) if query is not None: #query = query.decode(errors='replace') uery = query.encode(errors='replace') return query
django配置:
关于django的基础配置,如路由,app的注册等基础用法,暂时不过多说明;
以下主要关于APP中视图的配置,生成json;
from django.shortcuts import render from django.http import HttpResponse # Create your views here. #引入数据 from .models import app51data import json def index(request): # return HttpResponse("hello world") # return render(request,'index.html') #获取所有的对象,转换成json格式 data =app51data.objects.all() list3 = [] i = 1 for var in data: data = {} data['id'] = i data['Releasetime'] = var.Releasetime data['job_name'] = var.job_name data['salary'] = var.salary data['site'] = var.site data['education'] = var.education data['company_name'] = var.company_name data['Workexperience'] = var.Workexperience list3.append(data) i += 1 # a = json.dumps(data) # b = json.dumps(list2) # 将集合或字典转换成json 对象 c = json.dumps(list3) return HttpResponse(c)
实现效果:
完整代码在 GitHub 中,希望随手star,感谢!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章