圆月山庄资源网 Design By www.vgjia.com
本文介绍了Scrapy项目实战之爬取某社区用户详情,分享给大家,具有如下:
get_cookies.py
from selenium import webdriver from pymongo import MongoClient from scrapy.crawler import overridden_settings # from segmentfault import settings import time import settings class GetCookies(object): def __init__(self): # 初始化组件 # 设定webdriver选项 self.opt = webdriver.ChromeOptions() # self.opt.add_argument("--headless") # 初始化用户列表 self.user_list = settings.USER_LIST # 初始化MongoDB参数 self.client = MongoClient(settings.MONGO_URI) self.db = self.client[settings.MONGO_DB] self.collection = self.db["cookies"] def get_cookies(self,username,password): """ :param username: :param password: :return: cookies """ # 使用webdriver选项创建driver driver = webdriver.Chrome(executable_path="/Users/Hank/scrapy/segmentfault/segmentfault/chromedriver",options=self.opt) driver.get("https://segmentfault.com/user/login") driver.find_element_by_name("username").send_keys(username) driver.find_element_by_name("password").send_keys(password) driver.find_element_by_xpath("//button[@type='submit']").click() time.sleep(2) driver.get("https://segmentfault.com/u/luwangmeilun/users/following") # 登陆之后获取页面cookies cookies = driver.get_cookies() driver.quit() return cookies def format_cookies(self,cookies): """ :param cookies: 从driver.get_cookies的形式为: [{'domain': 'segmentfault.com', 'httpOnly': False, 'name': 'PHPSESSID', 'path': '/', 'secure': False, 'value': 'web2~5grmfa89j12eksub8hja3bvaq4'}, {'domain': '.segmentfault.com', 'expiry': 1581602940, 'httpOnly': False, 'name': 'Hm_lvt_e23800c454aa573c0ccb16b52665ac26', 'path': '/', 'secure': False, 'value': '1550066940'}, {'domain': '.segmentfault.com', 'httpOnly': False, 'name': 'Hm_lpvt_e23800c454aa573c0ccb16b52665ac26', 'path': '/', 'secure': False, 'value': '1550066940'}, {'domain': '.segmentfault.com', 'expiry': 1550067000, 'httpOnly': False, 'name': '_gat', 'path': '/', 'secure': False, 'value': '1'}, {'domain': '.segmentfault.com', 'expiry': 1550153340, 'httpOnly': False, 'name': '_gid', 'path': '/', 'secure': False, 'value': 'GA1.2.783265084.1550066940'}, {'domain': '.segmentfault.com', 'expiry': 1613138940, 'httpOnly': False, 'name': '_ga', 'path': '/', 'secure': False, 'value': 'GA1.2.1119166665.1550066940'}] 只需提取每一项的name与value即可 :return: """ c = dict() for item in cookies: c[item['name']] = item['value'] return c def save(self): print("开始获取Cookies....") # 从用户列表中获取用户名与密码,分别登陆获取cookies for username,password in self.user_list: cookies = self.get_cookies(username,password) f_cookies = self.format_cookies(cookies) print("insert cookie:{}".format(f_cookies)) # 将格式整理后的cookies插入MongoDB数据库 self.collection.insert_one(f_cookies) # s = db[self.collection].find() # for i in s: # print(i) if __name__ == '__main__': cookies = GetCookies() for i in range(20): cookies.save()
item.py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class SegmentfaultItem(scrapy.Item): # define the fields for your item here like: # 个人属性 # 姓名 name = scrapy.Field() # 声望 rank = scrapy.Field() # 学校 school = scrapy.Field() # 专业 majors = scrapy.Field() # 公司 company = scrapy.Field() # 工作 job = scrapy.Field() # blog blog = scrapy.Field() # 社交活动数据 # 关注人数 following = scrapy.Field() # 粉丝数 fans = scrapy.Field() # 回答数 answers = scrapy.Field() # 提问数 questions = scrapy.Field() # 文章数 articles = scrapy.Field() # 讲座数 lives = scrapy.Field() # 徽章数 badges = scrapy.Field() # 技能属性 # 点赞数 like = scrapy.Field() # 技能 skills = scrapy.Field() # 注册日期 register_date = scrapy.Field() # 问答统计 # 回答最高得票数 answers_top_score = scrapy.Field() # 得票数最高的回答对应的问题的标题 answers_top_title = scrapy.Field() # 得票数最高的回答对应的问题的标签 answers_top_tags = scrapy.Field() # 得票数最高的回答对应的问题的内容 answers_top_question = scrapy.Field() # 得票数最高的回答对应的问题的内容 answers_top_content = scrapy.Field()
pipeline.py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo class SegmentfaultPipeline(object): # 设定MongoDB集合名称 collection_name = 'userinfo' def __init__(self,mongo_uri,mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db # 通过crawler获取settings.py中设定的MongoDB连接信息 @classmethod def from_crawler(cls,crawler): return cls( mongo_uri = crawler.settings.get('MONGO_URI'), mongo_db = crawler.settings.get('MONGO_DB','segmentfault') ) # 当爬虫启动时连接MongoDB def open_spider(self,spider): self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] # 当爬虫关闭时断开MongoDB连接 def close_spider(self,spider): self.client.close() # 将Item插入数据库保存 def process_item(self, item, spider): self.db[self.collection_name].insert_one(dict(item)) return item
settings.py
# -*- coding: utf-8 -*- # Scrapy settings for segmentfault project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'segmentfault' SPIDER_MODULES = ['segmentfault.spiders'] NEWSPIDER_MODULE = 'segmentfault.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS = 100 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # DOWNLOAD_DELAY = 2 # The download delay setting will honor only one of: # CONCURRENT_REQUESTS_PER_DOMAIN = 32 # CONCURRENT_REQUESTS_PER_IP = 32 # Disable cookies (enabled by default) # COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False RETRY_ENABLED = False REDIRECT_ENABLED = False DOWNLOAD_TIMEOUT = 5 # HTTPALLOW # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html SPIDER_MIDDLEWARES = { 'segmentfault.middlewares.SegmentfaultSpiderMiddleware': 543, } # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { # 'segmentfault.middlewares.SegmentfaultHttpProxyMiddleware': 543, 'segmentfault.middlewares.SegmentfaultUserAgentMiddleware':643, 'segmentfault.middlewares.SegmentfaultCookiesMiddleware':743, 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': None, 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, # 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware':None, } # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'segmentfault.pipelines.SegmentfaultPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html # AUTOTHROTTLE_ENABLED = True # # The initial download delay # AUTOTHROTTLE_START_DELAY = 5 # # The maximum download delay to be set in case of high latencies # AUTOTHROTTLE_MAX_DELAY = 60 # # The average number of requests Scrapy should be sending in parallel to # # each remote server # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # # Enable showing throttling stats for every response received: # AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' # 配置MONGODB MONGO_URI = 'localhost:27017' MONGO_DB = 'segmentfault' # 用户列表 USER_LIST = [ ("798549150@qq.com","guoqing1010"), ("learnscrapy@163.com","guoqing1010"), ] # 配置代理列表 PROXY_LIST = [ 'http://115.182.212.169:8080', 'http://121.61.25.149:9999', 'http://180.118.247.189:9000', 'http://115.151.3.12:9999', 'http://183.154.213.160:9000', 'http://113.128.9.106:9999', 'http://124.42.68.152:90', 'http://49.70.48.50:9999', 'http://113.128.11.172:9999', 'http://111.177.177.40:9999', 'http://59.62.83.253:9999', 'http://39.107.84.185:8123', 'http://124.94.195.107:9999', 'http://111.177.160.132:9999', 'http://120.25.203.182:7777' ] USER_AGENT_LIST = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60', 'Opera/8.0 (Windows NT 5.1; U; en)', 'Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0', 'Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)', 'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 SE 2.X MetaSr 1.0', 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; SE 2.X MetaSr 1.0)', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000 Chrome/30.0.1599.101 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36' ]
userinfo.py
# -*- coding: utf-8 -*- import scrapy import time from scrapy import Request from pymongo import MongoClient from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider,Rule from scrapy.http import FormRequest from segmentfault.items import SegmentfaultItem class UserinfoSpider(CrawlSpider): name = 'userinfo' allowed_domains = ['segmentfault.com'] start_urls = ['https://segmentfault.com/u/mybigbigcat/users/following'] rules = ( # 用户主页地址,跟进并进行解析 Rule(LinkExtractor(allow=r'/u/\w+$'),callback='parse_item',follow=True), # 用户关注列表,跟进列表页面,抓取用户主页地址进行后续操作 # Rule(LinkExtractor(allow=r'/users/followed$'),follow=True), # 用户粉丝列表,跟进列表页面,抓取用户主页地址进行后续操作 Rule(LinkExtractor(allow=r'/users/following$'),follow=True), # 跟进其他页面地址 # Rule(LinkExtractor(allow=r'/users/[followed|following]"https://segmentfault.com", cookies=cookies, meta={'cookiejar':1}, callback=self.after_login)] # 登录之后从start_url中开始抓取数据 def after_login(self,response): for url in self.start_urls: return self.make_requests_from_url(url) # def after_login(self,response): # yield Request(self.start_urls[0], # meta={'cookiejar':response.meta['cookiejar']}, # callback=self.parse_item) def parse_item(self, response): """ :param response: :return: """ item = SegmentfaultItem() # 个人属性模块 profile_head = response.css('.profile__heading') # 姓名 item['name'] = profile_head.css('h2[class*=name]::text').re_first(r'\w+') # 声望 item['rank'] = profile_head.css('.profile__rank-btn > span::text').extract_first() # 学校专业信息 school_info = profile_head.css('.profile__school::text').extract() if school_info: # 学校 item['school'] = school_info[0] # 专业 item['majors'] = school_info[1].strip() else: item['school'] = '' item['majors'] = '' # 公司职位信息 company_info = profile_head.css('.profile__company::text').extract() if company_info: # 公司 item['company'] = company_info[0] # 职位 item['job'] = company_info[1].strip() else: item['company'] = '' item['job'] = '' # 个人博客 item['blog'] = profile_head.css('a[class*=other-item-link]::attr(href)').extract_first() # 统计面板模块 profile_active = response.xpath("//div[@class='col-md-2']") # 关注人数 item['following'] = profile_active.css('div[class*=info] a > .h5::text').re(r'\d+')[0] # 粉丝人数 item['fans'] = profile_active.css('div[class*=info] a > .h5::text').re(r'\d+')[1] # 回答问题数 item['answers'] = profile_active.css('a[href*=answer] .count::text').re_first(r'\d+') # 提问数 item['questions'] = profile_active.css('a[href*=questions] .count::text').re_first(r'\d+') # 文章数 item['articles'] = profile_active.css('a[href*=articles] .count::text').re_first(r'\d+') # 讲座数 item['lives'] = profile_active.css('a[href*=lives] .count::text').re_first(r'\d+') # 徽章数 item['badges'] = profile_active.css('a[href*=badges] .count::text').re_first(r'\d+') # 徽章详细页面地址 badge_url = profile_active.css('a[href*=badges]::attr(href)').extract_first() # 技能面板模块 profile_skill = response.xpath("//div[@class='col-md-3']") # 技能标签列表 item['skills'] = profile_skill.css('.tag::text').re(r'\w+') # 获得的点赞数 item['like'] = profile_skill.css('.authlist').re_first(r'获得 (\d+) 次点赞') # 注册日期 item['register_date'] = profile_skill.css('.profile__skill--other p::text').extract_first() # if register_time: # item['register_date'] = ''.join(re.findall(r'\d+',register_time)) # else: # item['register_date'] = '' # 产出数据模块 profile_work = response.xpath("//div[@class='col-md-7']") # 回答获得的最高分 item['answers_top_score'] = profile_work.css('#navAnswer .label::text').re_first(r'\d+') # 最高分回答对应的问题的标题 item['answers_top_title'] = profile_work.css('#navAnswer div[class*=title-warp] > a::text').extract_first() # 最高分回答对应的问题的url answer_url = profile_work.css('#navAnswer div[class*=title-warp] > a::attr(href)').extract_first() # 将需要继续跟进抓取数据的url与item作为参数传递给相应方法继续抓取数据 request = scrapy.Request( # 问题详细页url url=response.urljoin(answer_url), meta={ # item需要传递 'item':item, # 徽章的url 'badge_url':response.urljoin(badge_url)}, # 调用parse_ansser继续处理 callback=self.parse_answer) yield request def parse_answer(self,response): # 取出传递的item item = response.meta['item'] # 取出传递的徽章详细页url badge_url = response.meta['badge_url'] # 问题标签列表 item['answers_top_tags'] = response.css('.question__title--tag .tag::text').re(r'\w+') # 先获取组成问题内容的字符串列表 question_content = response.css('.widget-question__item p').re(r'>(.*"htmlcode"># -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html import random import re import datetime import scrapy import logging import time from scrapy.conf import settings from pymongo import MongoClient from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware import pymongo logger = logging.getLogger(__name__) class SegmentfaultSpiderMiddleware(object): """ 处理Item中保存的三种类型注册日期数据: 1. 注册于 2015年12月12日 2. 注册于 3 天前 3. 注册于 5 小时前 """ def process_spider_output(self,response,result,spider): """ 输出response时调用此方法处理item中register_date :param response: :param result: 包含item :param spider: :return:处理过注册日期的item """ for item in result: # 判断获取的数据是否是scrapy.item类型 if isinstance(item,scrapy.Item): # 获取当前时间 now = datetime.datetime.now() register_date = item['register_date'] logger.info("获取注册日志格式为{}".format(register_date)) # 提取注册日期字符串,如'注册于2015年12月12日' => '20151212' day = ''.join(re.findall(r'\d+',register_date)) # 如果提取数字字符串长度大于4位,则为'注册于2015年12月12日'形式 if len(day) > 4: date = day # 如果‘时'在提取的字符串中,则为'注册于8小时前'形式 elif '时' in register_date: d = now - datetime.timedelta(hours=int(day)) date = d.strftime("%Y%m%d") # 最后一种情况就是'注册于3天前'形式 else: d = now - datetime.timedelta(days=int(day)) date = d.strftime("%Y%m%d") # 更新register_date值 item['register_date'] = date yield item class SegmentfaultHttpProxyMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. def __init__(self): self.proxy_list = settings['PROXY_LIST'] def process_request(self, request, spider): proxy = random.choice(self.proxy_list) logger.info('使用代理:{}'.format(proxy)) request.meta['proxy'] = proxy class SegmentfaultUserAgentMiddleware(object): def __init__(self): self.useragent_list = settings['USER_AGENT_LIST'] def process_request(self,request,spider): user_agent = random.choice(self.useragent_list) # logger.info('使用的USE USER-AGENT:{}'.format(user_agent)) request.headers['User-Agent'] = user_agent class SegmentfaultCookiesMiddleware(object): client = MongoClient(settings['MONGO_URI']) db = client[settings['MONGO_DB']] collection = db['cookies'] def get_cookies(self): """ 随机获取cookies :return: """ cookies = random.choice([cookie for cookie in self.collection.find()]) # 将不需要的"_id"与"_gat"参数删除 cookies.pop('_id') cookies.pop('_gat') # 将"Hm_lpvt_e23800c454aa573c0ccb16b52665ac26"填充当前时间 cookies['Hm_lpvt_e23800c454aa573c0ccb16b52665ac26'] = str(int(time.time())) return cookies def remove_cookies(self,cookies): """ 删除已失效的cookies :param cookies: :return: """ # 随机获取cookies中的一对键值,返回结果是一个元祖 i = cookies.popitem() # 删除cookies try: logger.info("删除cookies{}".format(cookies)) self.collection.remove({i[0]:i[1]}) except Exception as e: logger.info("No this cookies:{}".format(cookies)) def process_request(self,request,spider): """ 为每一个request添加一个cookie :param request: :param spider: :return: """ cookies = self.get_cookies() request.cookies = cookies def process_response(self,request,response,spider): """ 对于登录失效的情况,可能会重定向到登录页面,这时添加新的cookies继续,将请求放回调度器 :param request: :param response: :param spider: :return: """ if response.status in [301,302]: logger.info("Redirect response:{}".format(response)) redirect_url = response.headers['location'] if b'/user/login' in redirect_url: logger.info("Cookies失效") # 请求失败,重新获取一个cookie,添加到request,并停止后续中间件处理此request,将此request放入调度器 new_cookie = self.get_cookies() logger.info("获取新cookie:{}".format(new_cookie)) # 删除旧cookies self.remove_cookies(request.cookies) request.cookies = new_cookie return request # return responserun.py
from scrapy import cmdline # from segmentfault.get_cookies import GetCookies from get_cookies import GetCookies if __name__ == '__main__': cookies = GetCookies() cookies.save() name = 'userinfo' "" cmd = 'scrapy crawl {}'.format(name) cmdline.execute(cmd.split())
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2025年01月23日
2025年01月23日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]