在使用Tensor时,我们首先要掌握如何使用Tensor来定义不同数据类型的变量。Tensor时张量的英文,表示多维矩阵,和numpy对应,PyTorch中的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在cpu上运行。
常用的不同数据类型的Tensor,有32位的浮点型torch.FloatTensor, 64位浮点型 torch.DoubleTensor, 16位整形torch.ShortTensor, 32位整形torch.IntTensor和64位整形torch.LongTensor
一:Tensor的数据类型
1 torch.FloatTensor:用于生成数据类型为浮点型的Tensor,传递给torch.FloatTensor的参数可以是一个列表,也可以是一个维度值
2:torch.IntTensor:用于生成数据类型为整形的Tensor,传递给torch.IntTensor的参数可以是一个列表,也可以是一个维度值
3:torch.rand:用于生成数据类型为浮点型且维度指定的随机Tensor,和在NumPy中使用的numpy.rand生成随机数的方法类似,随机生成的浮点数据在0-1区间均匀分布
4:torch.randn:用于生成数据类型为浮点型且维度指定的随机Tensor,和在NumPy中使用numpy.randn生成随机数的方法类似,随机生成的浮点数的取值满足均值为0,方差为1的正态分布
5:torch.range:用于生成数据类型为浮点型且自定义起始范围和结束范围的Tensor,所以传递给torch.range的参数有三个,分别是范围的起始值,范围的结束值和步长,其中,步长用于指定从起始值到结束值得每步得数据间隔
二:Tensor的运算
通过对Tensor数据类型的变量进行运算,来组合一些简单或者复杂的算法,常用的Tensor运算如下。
1.torch.abs:将参数传递到torch.abs后返回输入参数的绝对值作为输出,输入参数必须是一个Tensor数据类型的变量。
2.torch.add:将参数传递到torch.add后返回输入参数的求和结果作为输出,输入参数可以全部是Tensor数据类型的变量,也可以一个是Tensor数据类型的变量,另一个是标量。
3.torch.clamp:对输入参数按照自定义的范围进行裁剪,最后将参数裁剪的结果作为输出。所以输入参数一共有三个,分别是需要进行裁剪的一共三个,分别是需要进行裁剪的Tensor数据类型的变量,裁剪的上边界,下边界。过程是,让变量的每个元素分别和上下边界比较,如果小于下边界,该元素就被重写下边界的值,如果大于上边界,该元素就被重写上边界的值。
4.torch.div:将参数传递到torch.div后返回输入参数的求商结果作为输出,同样,参与运算的参数可以全部是Tensor数据类型的变量,也可以是Tensor数据类型的变量和标量的组合
5.torch.mul:将参数传递到torch.mul后返回输入参数求积的结果作为输出,参与运算的参数可以全部是Tensor数据类型的变量,
也可以是Tensor数据类型的变量和标量的组合
6.torch.pow:将参数传递到torch.pow后返回输入参数的求幂结果作为输出,参与运算的参数可以全部是Tensor数据类型的变量,
也可以是Tensor数据类型的变量和标量的组合
就是a的b次方
7.torch.mm:将参数传递到torch.mm后返回输入参数的求积结果作为输出,不过这个求积结果的方式和之前的torch.mul运算方式不一样,toch.mm运用矩阵之间的乘法法则进行计算,所以被传入的参数会被当作矩阵进行处理,参数的维度自然也要满足矩阵乘法的前提条件,即前一个矩阵的行数必须和后一个矩阵的列数相等,否则不能计算。
8.torch.mv:将参数传递到torch.mv后返回输入参数的求积结果作为输出,torch.mv运用矩阵与向量之间的乘法规则进行计算,被传入的第一个参数代表矩阵,第二个参数代表向量,顺序不能颠倒
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]