圆月山庄资源网 Design By www.vgjia.com
在使用pytorch的时候,经常会涉及到两种数据格式tensor和ndarray之间的转换,这里总结一下两种格式的转换:
1. tensor cpu 和tensor gpu之间的转化:
tensor cpu 转为tensor gpu:
tensor_gpu = tensor_cpu.cuda()
> tensor_cpu = torch.ones((2,2)) tensor([[1., 1.], [1., 1.]]) > tensor_gpu = tensor_cpu.cuda() tensor([[1., 1.], [1., 1.]], device='cuda:0')
tensor gpu 转为tensor cpu:
tensor_cpu = tensor_gpu.cuda()
> tensor_gpu.cpu() tensor([[1., 1.], [1., 1.]])
2. tensor cpu 和 ndarray 之间的转化:
tensor cpu 转为 ndarray:
> np_array= tensor_cpu.numpy() array([[1., 1.], [1., 1.]], dtype=float32)
ndarray 转为 tensor cpu:
注:ndarray的默认精度为64位,Tensor的默认精度位32位,所以通过Tensor直接转换的话,精度会转换到32位,若通过from_numpy的方式,则会保留原来64位精度
> torch.from_numpy(np.ones((2,2))) tensor([[1., 1.], [1., 1.]], dtype=torch.float64) > torch.Tensor(np.ones((2,2))) tensor([[1., 1.], [1., 1.]])
3. tensor cpu 和 scalar 之间的转化:
如果只是训练了一个简单的分类网络,对单个样本的输出会是一个标量(scalar)
>torch.ones((1,1)).item() 1.0
通过一张图说明三者的转化方式:
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
更新日志
2025年01月24日
2025年01月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]