装饰器
本质是一个接受参数为函数的函数。
作用:为一个已经实现的方法添加额外的通用功能,比如日志记录、运行计时等。
举例
1.不带参数的装饰器,不用@
# 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 不用@ f = deco_test(do_something)("1","2","3")
输出:
before function
1
2
3
after function
个人理解:
相当于在 do_something
函数外面套了两个输出: before function 和 after function 。
2.不带参数的装饰器,用 @
# 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper @deco_test def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
before function
1
2
3
after function
个人理解:
相当于执行 do_something 函数的时候,因为有 @ 的原因,已经知道有一层装饰器 deco_test ,所以不需要再单独写 deco_test(do_something) 了。
3.带参数的装饰器
# 带参数的装饰器 def logging(level): def wrapper(func): def inner_wrapper(*args, **kwargs): print("[{level}]: enter function {func}()".format(level=level, func=func.__name__)) f = func(*args, **kwargs) print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__)) return f return inner_wrapper return wrapper @logging(level="debug") def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
[debug]: enter function do_something()
1
2
3
after function: [debug]: enter function do_something()
个人理解:
装饰器带了一个参数 level = "debug" 。
最外层的函数 logging() 接受参数并将它们作用在内部的装饰器函数上面。内层的函数 wrapper() 接受一个函数作为参数,然后在函数上面放置一个装饰器。这里的关键点是装饰器是可以使用传递给 logging() 的参数的。
4.类装饰器
# 类装饰器 class deco_cls(object): def __init__(self, func): self._func = func def __call__(self, *args, **kwargs): print("class decorator before function") f = self._func(*args, **kwargs) print("class decorator after function") return f @deco_cls def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
class decorator before function
1
2
3
class decorator after function
个人理解:
使用一个装饰器去包装函数,返回一个可调用的实例。 因此定义了一个类装饰器。
5.两层装饰器
# 不带参数的装饰器 def deco_test(func): def wrapper(*args, **kwargs): print("before function") f = func(*args, **kwargs) print("after function") return f return wrapper # 带参数的装饰器 def logging(level): def wrapper(func): def inner_wrapper(*args, **kwargs): print("[{level}]: enter function {func}()".format(level=level, func=func.__name__)) f = func(*args, **kwargs) print("after function: [{level}]: enter function {func}()".format(level=level, func=func.__name__)) return f return inner_wrapper return wrapper @logging(level="debug") @deco_test def do_something(a,b,c): print(a) time.sleep(1) print(b) time.sleep(1) print(c) return a if __name__ == '__main__': # 使用@ f = do_something("1","2","3")
输出:
[debug]: enter function wrapper()
before function
1
2
3
after function
after function: [debug]: enter function wrapper()
个人理解:
在函数 do_something() 外面先套一层 deco_test() 装饰器,再在最外面套一层 logging() 装饰器。
以上就是python 装饰器的一些个人理解的详细内容,更多关于python 装饰器的资料请关注其它相关文章!
python,装饰器
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章