1. 数据抽取的概念
2. 数据的分类
3. JSON数据概述及解析
3.1 JSON数据格式
3.2 解析库json
json模块
是Python内置标准库,主要可以完成两个功能:序列化和反序列化。JSON对象和Python对象映射图如下:
3.2.1 json序列化
对象(字典/列表) 通过 json.dump()/json.dumps()
==> json字符串。示例代码如下:
import json class Phone(object): def __init__(self, name, price): self.name = name self.price = price class Default(json.JSONEncoder): def default(self, o): print(o) # o: <__main__.Phone object at 0x10aa52c90> return [o.name, o.price] def parse(obj): print(obj) return {"name": obj.name, "price": obj.price} person_info_dict = { "name": "Amo", "age": 18, "is_boy": True, # "n": float("nan"), # float("nan"):NaN float("inf")=>Infinity float("-inf")=>-Infinity "phone": Phone("苹果8plus", 6458), "hobby": ("sing", "dance"), "dog": { "name": "藏獒", "age": 5, "color": "棕色", "isVIP": True, "child": None }, } """ obj:需要序列化的对象 字典/列表 这里指的是person_info_dict indent: 缩进 单位: 字符 sort_keys: 是否按key排序 默认是False不排序 cls: json.JSONEncoder子类 处理不能序列化的对象 ensure_ascii: 是否确保ascii编码 默认是True确保 "苹果8plus"==>"\u82f9\u679c8plus" 所以改为False default: 对象不能被序列化时,调用对应的函数解析 """ # 将结果返回给一个变量 result = json.dumps(person_info_dict, indent=2, sort_keys=True, ensure_ascii=False, # cls=Default, default=parse, # allow_nan=False 是否处理特殊常量值 # 默认为True 但是JSON标准规范不支持NaN, Infinity和-Infinity ) print(result) with open("dump.json", "w", encoding="utf8") as file: # json.dump是将序列化后的内容存储到文件中 其他参数用法和dumps一致 json.dump(person_info_dict, file, indent=4, ensure_ascii=False, default=parse)
3.2.2 json反序列化
json字符串通过json.load()/json.loads()
==> 对象(字典/列表),示例代码如下:
import json class Phone(object): def __init__(self, name, price): self.name = name self.price = price def pi(num): return int(num) + 1 def oh(dic): if "price" in dic.keys(): return Phone(dic["name"], dic["price"]) return dic def oph(*args, **kwargs): print(*args, **kwargs) # 我自己本地有一个dump.json文件 with open("dump.json", "r", encoding="utf8") as file: # content = file.read() # parse_int/float: 整数/浮点数钩子函数 # object_hook: 对象解析钩子函数 将字典转为特定对象 传递给函数的是字典对象 # object_pairs_hook: 转化为特定对象 传递的是元组列表 # parse_constant: 常量钩子函数 NaN/Infinity/-Infinity # result = json.loads(content, object_hook=oh, parse_int=pi, object_pairs_hook=oph) result = json.load(file, parse_int=pi, object_hook=oh) # 直接将文件对象传入 print(type(result)) # <class 'dict'> print(result)
4. jsonpath
jsonpath
三方库,点击这里这里进入官网,通过路径表达式,来快速获取字典当中的指定数据,灵感来自xpath表达式。命令安装:
pip install --user -i http://pypi.douban.com/simple --trusted-host pypi.douban.com jsonpath
或者:
4.1 使用
语法格式如下:
from jsonpath import jsonpath dic = {....} # 要找数据的字典 jsonpath(dic, 表达式)
常用的表达式语法如下:
JSONPath
描述
$
根节点(假定的外部对象,可以理解为上方的dic)
@
现行节点(当前对象)
.或者[]
取子节点(子对象)
..
就是不管位置,选择所有符合条件的节点(后代对象)
*
匹配所有元素节点
[]
迭代集合,谓词条件,下标
[,]
多选
"htmlcode">
dic = { "person": { "name": "Amo", "age": 18, "dog": [{ "name": "小花", "color": "red", "age": 6, "isVIP": True }, { "name": "小黑", "color": "black", "age": 2 }] } }
将上述抽象成一个树形结构如图所示:
需求及结果如下:
JSONPath
Result
$.person.age
获取人的年龄
$..dog[1].age
获取第2个小狗的年龄
$..dog[0,1].age | $..dog[*].age
获取所有小狗的年龄
$..dog["htmlcode">
from jsonpath import jsonpath dic = { "person": { "name": "Amo", "age": 18, "dog": [{ "name": "小花", "color": "red", "age": 6, "isVIP": True }, { "name": "小黑", "color": "black", "age": 2 }] } } # 1.获取人的年龄 print(jsonpath(dic, "$.person.age")) # 获取到数据返回一个列表 否则返回False # 2.获取第2个小狗的年龄 print(jsonpath(dic, "$..dog[1].age")) # 3.获取所有小狗的年龄 print(jsonpath(dic, "$..dog[0,1].age")) print(jsonpath(dic, "$..dog[*].age")) # 4.获取是VIP的小狗 print(jsonpath(dic, "$..dog[")) # 5.获取年龄大于2的小狗 print(jsonpath(dic, "$..dog[")) # 6.获取最后一个小狗 print(jsonpath(dic, "$..dog[-1:]")) print(jsonpath(dic, "$..dog[(@.length-1)]"))
上述代码执行结果如下:
案例二用到的字典如下:
book_dict = { "store": { "book": [ {"category": "reference", "author": "Nigel Rees", "title": "Sayings of the Century", "price": 8.95 }, {"category": "fiction", "author": "Evelyn Waugh", "title": "Sword of Honour", "price": 12.99 }, {"category": "fiction", "author": "Herman Melville", "title": "Moby Dick", "isbn": "0-553-21311-3", "price": 8.99 }, {"category": "fiction", "author": "J. R. R. Tolkien", "title": "The Lord of the Rings", "isbn": "0-395-19395-8", "price": 22.99 } ], "bicycle": { "color": "red", "price": 19.95 } } }
将上述抽象成一个树形结构如图所示:
需求及结果如下:
JSONPath
Result
$.store.book[*].author
store中的所有的book的作者
$.store[*]
store下的所有的元素
$..price
store中的所有的内容的价格
$..book[2]
第三本书
$..book[(@.length-1)]
最后一本书
$..book[0:2]
前两本书
$.store.book["htmlcode">
from jsonpath import jsonpath book_dict = { "store": { "book": [ {"category": "reference", "author": "Nigel Rees", "title": "Sayings of the Century", "price": 8.95 }, {"category": "fiction", "author": "Evelyn Waugh", "title": "Sword of Honour", "price": 12.99 }, {"category": "fiction", "author": "Herman Melville", "title": "Moby Dick", "isbn": "0-553-21311-3", "price": 8.99 }, {"category": "fiction", "author": "J. R. R. Tolkien", "title": "The Lord of the Rings", "isbn": "0-395-19395-8", "price": 22.99 } ], "bicycle": { "color": "red", "price": 19.95 } } } # 1.store中的所有的book的作者 print(jsonpath(book_dict, "$.store.book[*].author")) print(jsonpath(book_dict, "$..author")) # 2.store下的所有的元素 print(jsonpath(book_dict, "$.store[*]")) print(jsonpath(book_dict, "$.store.*")) # 3.store中的所有的内容的价格 print(jsonpath(book_dict, "$..price")) # 4.第三本书 print(jsonpath(book_dict, "$..book[2]")) # 5.最后一本书 print(jsonpath(book_dict, "$..book[-1:]")) print(jsonpath(book_dict, "$..book[(@.length-1)]")) # 6.前两本书 print(jsonpath(book_dict, "$..book[0:2]")) # 7.获取有isbn的所有书 print(jsonpath(book_dict, "$.store.book[")) # 8.获取价格大于10的所有的书 print(jsonpath(book_dict, "$.store.book[")) # 9.获取所有的数据 print(jsonpath(book_dict, "$..*"))
5. Python专用JSON解析库pickle
pickle
处理的json对象不通用,可以额外的把函数给序列化。示例代码如下:
import pickle def eat(): print("Amo在努力地写博客~") person_info_dict = { "name": "Amo", "age": 18, "eat": eat } # print(pickle.dumps(person_info_dict)) with open("pickle_json", "wb") as file: pickle.dump(person_info_dict, file) with open("pickle_json", "rb") as file: result = pickle.load(file) result["eat"]()
JsonPath与XPath语法对比:
Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。
XPath
JSONPath
描述
/
$
根节点
.
@
现行节点
/
.or[]
取子节点
..
n/a
取父节点,Jsonpath未支持
//
..
就是不管位置,选择所有符合条件的条件
*
*
匹配所有元素节点
@
n/a
根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。
[]
[]
迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等)
|
[,]
支持迭代器中做多选。
[]
?()
支持过滤操作.
n/a
()
支持表达式计算
()
n/a
分组,JsonPath不支持
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章