圆月山庄资源网 Design By www.vgjia.com
这里我们通过请求网页例子来一步步理解爬虫性能
当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环
简单的循环串行
这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和
代码如下:
import requests url_list = [ 'http://www.baidu.com', 'http://www.pythonsite.com', 'http://www.cnblogs.com/' ] for url in url_list: result = requests.get(url) print(result.text)
通过线程池
通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多
import requests from concurrent.futures import ThreadPoolExecutor def fetch_request(url): result = requests.get(url) print(result.text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor(10) for url in url_list: #去线程池中获取一个线程,线程去执行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown(True)
线程池+回调函数
这里定义了一个回调函数callback
from concurrent.futures import ThreadPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print(future.result().text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor(5) for url in url_list: v = pool.submit(fetch_async,url) #这里调用回调函数 v.add_done_callback(callback) pool.shutdown()
通过进程池
通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好
import requests from concurrent.futures import ProcessPoolExecutor def fetch_request(url): result = requests.get(url) print(result.text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor(10) for url in url_list: #去进程池中获取一个线程,子进程程去执行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown(True)
进程池+回调函数
这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源
from concurrent.futures import ProcessPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print(future.result().text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor(5) for url in url_list: v = pool.submit(fetch_async, url) # 这里调用回调函数 v.add_done_callback(callback) pool.shutdown()
主流的单线程实现并发的几种方式
- asyncio
- gevent
- Twisted
- Tornado
下面分别是这四种代码的实现例子:
asyncio例子1:
import asyncio @asyncio.coroutine #通过这个装饰器装饰 def func1(): print('before...func1......') # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep yield from asyncio.sleep(2) print('end...func1......') tasks = [func1(), func1()] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather(*tasks)) loop.close()
上述的效果是同时会打印两个before的内容,然后等待2秒打印end内容
这里asyncio并没有提供我们发送http请求的方法,但是我们可以在yield from这里构造http请求的方法。
asyncio例子2:
import asyncio @asyncio.coroutine def fetch_async(host, url='/'): print("----",host, url) reader, writer = yield from asyncio.open_connection(host, 80) #构造请求头内容 request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,) request_header_content = bytes(request_header_content, encoding='utf-8') #发送请求 writer.write(request_header_content) yield from writer.drain() text = yield from reader.read() print(host, url, text) writer.close() tasks = [ fetch_async('www.cnblogs.com', '/zhaof/'), fetch_async('dig.chouti.com', '/pic/show"htmlcode">import aiohttp import asyncio @asyncio.coroutine def fetch_async(url): print(url) response = yield from aiohttp.request('GET', url) print(url, response) response.close() tasks = [fetch_async('http://baidu.com/'), fetch_async('http://www.chouti.com/')] event_loop = asyncio.get_event_loop() results = event_loop.run_until_complete(asyncio.gather(*tasks)) event_loop.close()asyncio+requests代码例子
import asyncio import requests @asyncio.coroutine def fetch_async(func, *args): loop = asyncio.get_event_loop() future = loop.run_in_executor(None, func, *args) response = yield from future print(response.url, response.content) tasks = [ fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'), fetch_async(requests.get, 'http://dig.chouti.com/pic/show"htmlcode">import gevent import requests from gevent import monkey monkey.patch_all() def fetch_async(method, url, req_kwargs): print(method, url, req_kwargs) response = requests.request(method=method, url=url, **req_kwargs) print(response.url, response.content) # ##### 发送请求 ##### gevent.joinall([ gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}), ]) # ##### 发送请求(协程池控制最大协程数量) ##### # from gevent.pool import Pool # pool = Pool(None) # gevent.joinall([ # pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), # pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), # pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}), # ])grequests代码例子
这个是讲requests+gevent进行了封装import grequests request_list = [ grequests.get('http://httpbin.org/delay/1', timeout=0.001), grequests.get('http://fakedomain/'), grequests.get('http://httpbin.org/status/500') ] # ##### 执行并获取响应列表 ##### # response_list = grequests.map(request_list) # print(response_list) # ##### 执行并获取响应列表(处理异常) ##### # def exception_handler(request, exception): # print(request,exception) # print("Request failed") # response_list = grequests.map(request_list, exception_handler=exception_handler) # print(response_list)twisted代码例子
#getPage相当于requets模块,defer特殊的返回值,rector是做事件循环 from twisted.web.client import getPage, defer from twisted.internet import reactor def all_done(arg): reactor.stop() def callback(contents): print(contents) deferred_list = [] url_list = ['http://www.bing.com', 'http://www.baidu.com', ] for url in url_list: deferred = getPage(bytes(url, encoding='utf8')) deferred.addCallback(callback) deferred_list.append(deferred) #这里就是进就行一种检测,判断所有的请求知否执行完毕 dlist = defer.DeferredList(deferred_list) dlist.addBoth(all_done) reactor.run()tornado代码例子
from tornado.httpclient import AsyncHTTPClient from tornado.httpclient import HTTPRequest from tornado import ioloop def handle_response(response): """ 处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop() :param response: :return: """ if response.error: print("Error:", response.error) else: print(response.body) def func(): url_list = [ 'http://www.baidu.com', 'http://www.bing.com', ] for url in url_list: print(url) http_client = AsyncHTTPClient() http_client.fetch(HTTPRequest(url), handle_response) ioloop.IOLoop.current().add_callback(func) ioloop.IOLoop.current().start()以上就是Python 爬虫性能相关总结的详细内容,更多关于Python 爬虫性能的资料请关注其它相关文章!
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
更新日志
2025年01月24日
2025年01月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]