Pandas最好用的函数
Pandas是Python
语言中非常好用的一种数据结构包,包含了许多有用的数据操作方法。而且很多算法相关的库函数的输入数据结构都要求是pandas
数据,或者有该数据的接口。
仔细看pandas的API说明文档,就会发现有好多有用的函数,比如非常常用的文件的读写函数就包括如下函数:
Format Type
Data Description
Reader
Writer
text
CSV
read_csv
to_csv
text
JSON
read_json
to_json
text
HTML
read_html
to_html
text
Local clipboard
read_clipboard
to_clipboard
binary
MS Excel
read_excel
to_excel
binary
HDF5 Format
read_hdf
to_hdf
binary
Feather Format
read_feather
to_feather
binary
Parquet Format
read_parquet
to_parquet
binary
Msgpack
read_msgpack
to_msgpack
binary
Stata
read_stata
to_stata
binary
SAS
read_sas
binary
Python Pickle Format
read_pickle
to_pickle
SQL
SQL
read_sql
to_sql
SQL
Google Big Query
read_gbq
to_gbq
读取数据后,对于数据处理来说,有好多有用的相关操作的函数,但是我认为其中最好用的函数是下面这个函数:
apply函数
apply函数是`pandas`里面所有函数中自由度最高的函数。该函数如下:
DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
该函数最有用的是第一个参数,这个参数是函数,相当于C/C++
的函数指针。
这个函数需要自己实现,函数的传入参数根据axis
来定,比如axis = 1
,就会把一行数据作为Series
的数据结构传入给自己实现的函数中,我们在函数中实现对Series
不同属性之间的计算,返回一个结果,则apply
函数会自动遍历每一行DataFrame
的数据,最后将所有结果组合成一个Series
数据结构并返回。
比如读取一个表格:
假如我们想要得到表格中的PublishedTime
和ReceivedTime
属性之间的时间差数据,就可以使用下面的函数来实现:
import pandas as pd import datetime #用来计算日期差的包 def dataInterval(data1,data2): d1 = datetime.datetime.strptime(data1, '%Y-%m-%d') d2 = datetime.datetime.strptime(data2, '%Y-%m-%d') delta = d1 - d2 return delta.days def getInterval(arrLike): #用来计算日期间隔天数的调用的函数 PublishedTime = arrLike['PublishedTime'] ReceivedTime = arrLike['ReceivedTime'] # print(PublishedTime.strip(),ReceivedTime.strip()) days = dataInterval(PublishedTime.strip(),ReceivedTime.strip()) #注意去掉两端空白 return days if __name__ == '__main__': fileName = "NS_new.xls"; df = pd.read_excel(fileName) df['TimeInterval'] = df.apply(getInterval , axis = 1)
有时候,我们想给自己实现的函数传递参数,就可以用的apply
函数的*args
和**kwds
参数,比如同样的时间差函数,我希望自己传递时间差的标签,这样没次标签更改就不用修改自己实现的函数了,实现代码如下:
import pandas as pd import datetime #用来计算日期差的包 def dataInterval(data1,data2): d1 = datetime.datetime.strptime(data1, '%Y-%m-%d') d2 = datetime.datetime.strptime(data2, '%Y-%m-%d') delta = d1 - d2 return delta.days def getInterval_new(arrLike,before,after): #用来计算日期间隔天数的调用的函数 before = arrLike[before] after = arrLike[after] # print(PublishedTime.strip(),ReceivedTime.strip()) days = dataInterval(after.strip(),before.strip()) #注意去掉两端空白 return days if __name__ == '__main__': fileName = "NS_new.xls"; df = pd.read_excel(fileName) df['TimeInterval'] = df.apply(getInterval_new , axis = 1, args = ('ReceivedTime','PublishedTime')) #调用方式一 #下面的调用方式等价于上面的调用方式 df['TimeInterval'] = df.apply(getInterval_new , axis = 1, **{'before':'ReceivedTime','after':'PublishedTime'}) #调用方式二 #下面的调用方式等价于上面的调用方式 df['TimeInterval'] = df.apply(getInterval_new , axis = 1, before='ReceivedTime',after='PublishedTime') #调用方式三
修改后的getInterval_new
函数多了两个参数,这样我们在使用apply
函数的时候要自己传递参数,代码中显示的三种传递方式都行。
最后,本篇的全部代码在下面这个网页可以下载:
https://github.com/Dongzhixiao/Python_Exercise/tree/master/pandas_apply
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章