圆月山庄资源网 Design By www.vgjia.com
1、使用model_select子模块中的train_test_split函数进行划分
数据:使用kaggle上Titanic数据集
划分方法:随机划分
# 导入pandas模块,sklearn中model_select模块 import pandas as pd from sklearn.model_select import train_test_split # 读取数据 data = pd.read_csv('.../titanic_dataset/train.csv') # 将特征划分到 X 中,标签划分到 Y 中 x = data.iloc[:, 2:] y = data.loc['Survived'] # 使用train_test_split函数划分数据集(训练集占75%,测试集占25%)
x_train, x_test, y_train,y_test = train_test_split(x, y, test_size=0.25, ramdon_state=0)
缺点:1、数据浪费严重,只对部分数据进行了验证
2、容易过拟合
2、k折交叉验证(kfold)
原理:将数据集划分成n个不相交的子集,每次选择其中一个作为测试集,剩余n-1个子集作为 训练集,共生成 n 组数据
使用方法:sklearn.model_select.KFold(n_splits=5,shuffle=False,random_state=0)
参数说明:n_splits:数据集划分的份数,
shuffle:每次划分前是否重新洗牌 ,False表示划分前不洗牌,每次划分结果一样,True表示划分前洗牌,每次划分结果不同
random_state:随机种子数
(1)shuffle=False 情况下数据划分情况
# 不洗牌模式下数据划分情况 import numpy as np from sklearn.model_selection import KFold x = np.arange(46).reshape(23,2) kf = KFold(n_splits=5,shuffle=False) for train_index, test_index in kf.split(x): print(train_index,test_index) [ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22] [0 1 2 3 4] [ 0 1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22] [5 6 7 8 9] [ 0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22] [10 11 12 13 14] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 21 22] [15 16 17 18] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18] [19 20 21 22]
(2)shuffle=True 情况下数据划分情况
import numpy as np from sklearn.model_selection import KFold x = np.arange(46).reshape(23,2) kf = KFold(n_splits=5,shuffle=True) for train_index, test_index in kf.split(x): print(train_index,test_index) [ 0 3 4 5 6 7 8 9 10 11 12 14 15 16 17 19 20 21] [ 1 2 13 18 22] [ 0 1 2 3 5 6 7 10 11 13 15 16 17 18 19 20 21 22] [ 4 8 9 12 14] [ 0 1 2 3 4 7 8 9 10 12 13 14 15 16 17 18 19 22] [ 5 6 11 20 21] [ 1 2 3 4 5 6 8 9 10 11 12 13 14 15 18 19 20 21 22] [ 0 7 16 17] [ 0 1 2 4 5 6 7 8 9 11 12 13 14 16 17 18 20 21 22] [ 3 10 15 19]
总结:从数据中可以看出shuffle=True情况下数据的划分是打乱的,而shuffle=False情况下数据的划分是有序的
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
更新日志
2025年01月24日
2025年01月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]