前言
众所周知,Dataset和Dataloder是pytorch中进行数据载入的部件。必须将数据载入后,再进行深度学习模型的训练。在pytorch的一些案例教学中,常使用torchvision.datasets
自带的MNIST、CIFAR-10数据集,一般流程为:
# 下载并存放数据集 train_dataset = torchvision.datasets.CIFAR10(root="数据集存放位置",download=True) # load数据 train_loader = torch.utils.data.DataLoader(dataset=train_dataset)
但是,在我们自己的模型训练中,需要使用非官方自制的数据集。这时应该怎么办呢?
我们可以通过改写torch.utils.data.Dataset
中的__getitem__
和__len__
来载入我们自己的数据集。
__getitem__
获取数据集中的数据,__len__
获取整个数据集的长度(即个数)。
改写
采用pytorch官网案例中提供的一个脸部landmark数据集。数据集中含有存放landmark的csv文件,但是我们在这篇文章中不使用(其实也可以随便下载一些图片作数据集来实验)。
import os import torch from skimage import io, transform import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils plt.ion() # interactive mode
torch.utils.data.Dataset
是一个抽象类,我们自己的数据集需要继承Dataset
,然后改写上述两个函数:
class ImageLoader(Dataset): def __init__(self, file_path, transform=None): super(ImageLoader,self).__init__() self.file_path = file_path self.transform = transform # 对输入图像进行预处理,这里并没有做,预设为None self.image_names = os.listdir(self.file_path) # 文件名的列表 def __getitem__(self,idx): image = self.image_names[idx] image = io.imread(os.path.join(self.file_path,image)) # if self.transform: # image= self.transform(image) return image def __len__(self): return len(self.image_names) # 设置自己存放的数据集位置,并plot展示 imageloader = ImageLoader(file_path="D:\\Projects\\datasets\\faces\\") # imageloader.__len__() # 输出数据集长度(个数),应为71 # print(imageloader.__getitem__(0)) # 以数据形式展示 plt.imshow(imageloader.__getitem__(0)) # 以图像形式展示 plt.show()
得到的图片输出:
得到的数据输出,:
array([[[ 66, 59, 53], [ 66, 59, 53], [ 66, 59, 53], ..., [ 59, 54, 48], [ 59, 54, 48], [ 59, 54, 48]], ..., [153, 141, 129], [158, 146, 134], [158, 146, 134]]], dtype=uint8)
上面看到dytpe=uint8
,实际进行训练的时候,常常需要更改成float
的数据类型。可以使用:
# 直接改成pytorch中的tensor下的float格式 # 也可以用numpy的改成普通的float格式 to_float= torch.from_numpy(imageloader.__getitem__(0)).float()
改写完成后,直接使用train_loader =torch.utils.data.DataLoader(dataset=imageloader)
载入到Dataloader
中,就可以使用了。
下面的代码可以试着运行一下,产生的是一模一样的图片结果。
train_loader = torch.utils.data.DataLoader(dataset=imageloader) train_loader.dataset[0] plt.imshow(train_loader.dataset[0]) plt.show()
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章