在pytorch训练过程中可以通过下面这一句代码来打印当前学习率
print(net.optimizer.state_dict()['param_groups'][0]['lr'])
补充知识:Pytorch:代码实现不同层设置不同的学习率,选择性学习某些层参数
1,如何动态调整学习率
在使用pytorch进行模型训练时,经常需要随着训练的进行逐渐降低学习率,在pytorch中给出了非常方面的方法:
假设我们定义了一个优化器:
import torch import torch.nn as nn optimizer = torch.optim(model.parameters(), lr = 0.01, momentum = 0.9)
该优化器的初始化学习为0.01,
如果我们学习每个"n" 个epoch把学习率降低为原来的0.9倍,则需要声明一个学习率调节器:
torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
其中:
optimizer: 前面声明的优化器;
step_size: 每step_size个epoch学习率降低为原来的gamma倍,
last_epoch: 当前所处的epoch
例如:
# Assuming optimizer uses lr = 0.05 for all groups # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 # ... scheduler = StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(100): scheduler.step() train(...) validate(...)
另外其他常用的更新策略类似:
torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
2,如何选择性学习某些参数
对于我们现有的模型model,通过调整参数的requires_grad 属性控制该模型是否参与求导运算
for name, param in model.named_parameters(): if param.requires_grad: print("requires_grad: True ", name) else: print("requires_grad: False ", name)
如果模型中包含多个子模块,可用通过
sub_block = model.children()
获取该模块,然后通过迭代索引的方式获取参数:
for name, param in sub_block.named_parameters()
以上这篇pytorch实现查看当前学习率就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
pytorch,学习率
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《暗喻幻想》顺风耳作用介绍
- 崔健1985-梦中的倾诉[再版][WAV+CUE]
- 黄子馨《追星Xin的恋人们2》HQ头版限量编号[WAV+CUE]
- 孟庭苇《情人的眼泪》开盘母带[低速原抓WAV+CUE]
- 孙露《谁为我停留HQCD》[低速原抓WAV+CUE][1.1G]
- 孙悦《时光音乐会》纯银CD[低速原抓WAV+CUE][1.1G]
- 任然《渐晚》[FLAC/分轨][72.32MB]
- 英雄联盟新英雄安蓓萨上线了吗 新英雄安蓓萨技能介绍
- 魔兽世界奥杜尔竞速赛什么时候开启 奥杜尔竞速赛开启时间介绍
- 无畏契约CGRS准星代码多少 CGRS准星代码分享一览
- 张靓颖.2012-倾听【少城时代】【WAV+CUE】
- 游鸿明.1999-五月的雪【大宇国际】【WAV+CUE】
- 曹方.2005-遇见我【钛友文化】【WAV+CUE】
- Unity6引擎上线:稳定性提升、CPU性能最高提升4倍
- 人皇Sky今日举行婚礼!电竞传奇步入新篇章