圆月山庄资源网 Design By www.vgjia.com

在用pdb debug的时候,有时候需要看一下特定layer的权重以及相应的梯度信息,如何查看呢?

1. 首先把你的模型打印出来,像这样

pytorch查看模型weight与grad方式

2. 然后观察到model下面有module的key,module下面有features的key, features下面有(0)的key,这样就可以直接打印出weight了,在pdb debug界面输入p model.module.features[0].weight,就可以看到weight,输入 p model.module.features[0].weight.grad就可以查看梯度信息

pytorch查看模型weight与grad方式

pytorch查看模型weight与grad方式

补充知识:查看Pytorch网络的各层输出(feature map)、权重(weight)、偏置(bias)

BatchNorm2d参数量

torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# 卷积层中卷积核的数量C 
num_features – C from an expected input of size (N, C, H, W)
> import torch
> m = torch.nn.BatchNorm2d(100)
> m.weight.shape
torch.Size([100])
> m.numel()
AttributeError: 'BatchNorm2d' object has no attribute 'numel'
> m.weight.numel()
100
> m.parameters().numel()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'generator' object has no attribute 'numel'
> [p.numel() for p in m.parameters()]
[100, 100]

linear层

> import torch
> m1 = torch.nn.Linear(100,10)
# 参数数量= (输入神经元+1)*输出神经元
> m1.weight.shape
torch.Size([10, 100])
> m1.bias.shape
torch.Size([10])
> m1.bias.numel()
10
> m1.weight.numel()
1000
> m11 = list(m1.parameters())
> m11[0].shape
# weight
torch.Size([10, 100])
> m11[1].shape
# bias
torch.Size([10])

weight and bias

# Method 1 查看Parameters的方式多样化,直接访问即可
model = alexnet(pretrained=True).to(device)
conv1_weight = model.features[0].weight# Method 2 
# 这种方式还适合你想自己参考一个预训练模型写一个网络,各层的参数不变,但网络结构上表述有所不同
# 这样你就可以把param迭代出来,赋给你的网络对应层,避免直接load不能匹配的问题!
for layer,param in model.state_dict().items(): # param is weight or bias(Tensor) 
 print layer,param

feature map

由于pytorch是动态网络,不存储计算数据,查看各层输出的特征图并不是很方便!分下面两种情况讨论:

1、你想查看的层是独立的,那么你在forward时用变量接收并返回即可!!

class Net(nn.Module):
  def __init__(self):
    self.conv1 = nn.Conv2d(1, 1, 3)
    self.conv2 = nn.Conv2d(1, 1, 3)
    self.conv3 = nn.Conv2d(1, 1, 3)  def forward(self, x):
    out1 = F.relu(self.conv1(x))
    out2 = F.relu(self.conv2(out1))
    out3 = F.relu(self.conv3(out2))
    return out1, out2, out3

2、你的想看的层在nn.Sequential()顺序容器中,这个麻烦些,主要有以下几种思路:

# Method 1 巧用nn.Module.children()
# 在模型实例化之后,利用nn.Module.children()删除你查看的那层的后面层
import torch
import torch.nn as nn
from torchvision import modelsmodel = models.alexnet(pretrained=True)# remove last fully-connected layer
new_classifier = nn.Sequential(*list(model.classifier.children())[:-1])
model.classifier = new_classifier
# Third convolutional layer
new_features = nn.Sequential(*list(model.features.children())[:5])
model.features = new_features
# Method 2 巧用hook,推荐使用这种方式,不用改变原有模型
# torch.nn.Module.register_forward_hook(hook)
# hook(module, input, output) -> Nonemodel = models.alexnet(pretrained=True)
# 定义
def hook (module,input,output):
  print output.size()
# 注册
handle = model.features[0].register_forward_hook(hook)
# 删除句柄
handle.remove()# torch.nn.Module.register_backward_hook(hook)
# hook(module, grad_input, grad_output) -> Tensor or None
model = alexnet(pretrained=True).to(device)
outputs = []
def hook (module,input,output):
  outputs.append(output)
  print len(outputs)handle = model.features[0].register_backward_hook(hook)

注:还可以通过定义一个提取特征的类,甚至是重构成各层独立相同模型将问题转化成第一种

计算模型参数数量

def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)

以上这篇pytorch查看模型weight与grad方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,weight,grad

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?