圆月山庄资源网 Design By www.vgjia.com
详细的解释,读者自行打开这个链接查看,我这里只把最重要的说下
fit() 方法会返回一个训练期间历史数据记录对象,包含 training error, training accuracy, validation error, validation accuracy 字段,如下打印
# list all data in history
print(history.history.keys())
完整代码
# Visualize training history from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8] # create model model = Sequential() model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu')) model.add(Dense(8, kernel_initializer='uniform', activation='relu')) model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model history = model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10, verbose=0) # list all data in history print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
补充知识:训练时同时输出实时cost、准确率图
首先定义画图函数:
train_prompt = "Train cost" cost_ploter = Ploter(train_prompt) def event_handler_plot(ploter_title, step, cost): cost_ploter.append(ploter_title, step, cost) cost_ploter.plot()
在训练时如下方式使用:
EPOCH_NUM = 8 # 开始训练 lists = [] step = 0 for epochs in range(EPOCH_NUM): # 开始训练 for batch_id, train_data in enumerate(train_reader()): #遍历train_reader的迭代器,并为数据加上索引batch_id train_cost,sult,lab,vgg = exe.run(program=main_program, #运行主程序 feed=feeder.feed(train_data), #喂入一个batch的数据 fetch_list=[avg_cost,predict,label,VGG]) #fetch均方误差和准确率 if step % 10 == 0: event_handler_plot(train_prompt,step,train_cost[0]) # print(batch_id) if batch_id % 10 == 0: #每100次batch打印一次训练、进行一次测试 p = [np.sum(pre) for pre in sult] l = [np.sum(pre) for pre in lab] print(p,l,np.sum(sult),np.sum(lab)) print('Pass:%d, Batch:%d, Cost:%0.5f' % (epochs, batch_id, train_cost[0])) step += 1 # 保存模型 if model_save_dir is not None: fluid.io.save_inference_model(model_save_dir, ['images'], [predict], exe) print('训练模型保存完成!') end = time.time() print(time.strftime('V100训练用时:%M分%S秒',time.localtime(end-start)))
实时显示准确率用同样的方法
以上这篇Keras在训练期间可视化训练误差和测试误差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年11月02日
2024年11月02日
- 魔兽世界奥卡兹岛地牢入口在哪里 奥卡兹岛地牢入口位置一览
- 和文军-丽江礼物[2007]FLAC
- 陈随意2012-今生的伴[豪记][WAV+CUE]
- 罗百吉.2018-我们都一样【乾坤唱片】【WAV+CUE】
- 《怪物猎人:荒野》不加中配请愿书引热议:跪久站不起来了?
- 《龙腾世纪4》IGN 9分!殿堂级RPG作品
- Twitch新规禁止皮套外露敏感部位 主播直接“真身”出镜
- 木吉他.1994-木吉他作品全集【滚石】【WAV+CUE】
- 莫华伦.2022-一起走过的日子【京文】【WAV+CUE】
- 曾淑勤.1989-装在袋子里的回忆【点将】【WAV+CUE】
- 滚石香港黄金十年系列《赵传精选》首版[WAV+CUE][1.1G]
- 雷婷《乡村情歌·清新民谣》1:1母盘直刻[低速原抓WAV+CUE][1.1G]
- 群星 《DJ夜色魅影HQⅡ》天艺唱片[WAV+CUE][1.1G]
- 群星《烧透你的耳朵2》DXD金佰利 [低速原抓WAV+CUE][1.3G]
- 群星《难忘的回忆精选4》宝丽金2CD[WAV+CUE][1.4G]