圆月山庄资源网 Design By www.vgjia.com
Pandas是Python中非常常用的数据处理工具,使用起来非常方便。它建立在NumPy数组结构之上,所以它的很多操作通过NumPy或者Pandas自带的扩展模块编写,这些模块用Cython编写并编译到C,并且在C上执行,因此也保证了处理速度。
今天我们就来体验一下它的强大之处。
1.创建数据
使用pandas可以很方便地进行数据创建,现在让我们创建一个5列1000行的pandas DataFrame:
mu1, sigma1 = 0, 0.1 mu2, sigma2 = 0.2, 0.2 n = 1000df = pd.DataFrame( { "a1": pd.np.random.normal(mu1, sigma1, n), "a2": pd.np.random.normal(mu2, sigma2, n), "a3": pd.np.random.randint(0, 5, n), "y1": pd.np.logspace(0, 1, num=n), "y2": pd.np.random.randint(0, 2, n), } )
- a1和a2:从正态(高斯)分布中抽取的随机样本。
- a3:0到4中的随机整数。
- y1:从0到1的对数刻度均匀分布。
- y2:0到1中的随机整数。
生成如下所示的数据:
2.绘制图像
Pandas 绘图函数返回一个matplotlib的坐标轴(Axes),所以我们可以在上面自定义绘制我们所需要的内容。比如说画一条垂线和平行线。这将非常有利于我们:
1.绘制平均线
2.标记重点的点
import matplotlib.pyplot as plt ax = df.y1.plot() ax.axhline(6, color="red", linestyle="--") ax.axvline(775, color="red", linestyle="--") plt.show()
我们还可以自定义一张图上显示多少个表:
fig, ax = plt.subplots(2, 2, figsize=(14,7)) df.plot(x="index", y="y1", ax=ax[0, 0]) df.plot.scatter(x="index", y="y2", ax=ax[0, 1]) df.plot.scatter(x="index", y="a3", ax=ax[1, 0]) df.plot(x="index", y="a1", ax=ax[1, 1]) plt.show()
3.绘制直方图
Pandas能够让我们用非常简单的方式获得两个图形的形状对比:
df[["a1", "a2"]].plot(bins=30, kind="hist") plt.show()
还能允许多图绘制:
df[["a1", "a2"]].plot(bins=30, kind="hist", subplots=True) plt.show()
当然,生成折线图也不在画下:
df[['a1', 'a2']].plot(by=df.y2, subplots=True) plt.show()
4.线性拟合
Pandas还能用于拟合,让我们用pandas找出一条与下图最接近的直线:
最小二乘法计算和该直线最短距离:
df['ones'] = pd.np.ones(len(df)) m, c = pd.np.linalg.lstsq(df[['index', 'ones']], df['y1'], rcond=None)[0]
根据最小二乘的结果绘制y和拟合出来的直线:
df['y'] = df['index'].apply(lambda x: x * m + c) df[['y', 'y1']].plot() plt.show()
标签:
pandas,绘图
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
更新日志
2025年01月24日
2025年01月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]