圆月山庄资源网 Design By www.vgjia.com

我就废话不多说了,大家还是直接看代码吧!

### 以下链接里面的code
import numpy as np
from keras.callbacks import Callback
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score
class Metrics(Callback):
def on_train_begin(self, logs={}):
 self.val_f1s = []
 self.val_recalls = []
 self.val_precisions = []

def on_epoch_end(self, epoch, logs={}):
 val_predict = (np.asarray(self.model.predict(self.model.validation_data[0]))).round()
 val_targ = self.model.validation_data[1]
 _val_f1 = f1_score(val_targ, val_predict)
 _val_recall = recall_score(val_targ, val_predict)
 _val_precision = precision_score(val_targ, val_predict)
 self.val_f1s.append(_val_f1)
 self.val_recalls.append(_val_recall)
 self.val_precisions.append(_val_precision)
 print “ — val_f1: %f — val_precision: %f — val_recall %f” %(_val_f1, _val_precision, _val_recall)
 return

metrics = Metrics()
model.fit(
 train_instances.x,
 train_instances.y,
 batch_size,
 epochs,
 verbose=2,
 callbacks=[metrics],
 validation_data=(valid_instances.x, valid_instances.y),
)

补充知识:Keras可使用的评价函数

1:binary_accuracy(对二分类问题,计算在所有预测值上的平均正确率)

binary_accuracy(y_true, y_pred)

2:categorical_accuracy(对多分类问题,计算在所有预测值上的平均正确率)

categorical_accuracy(y_true, y_pred)

3:sparse_categorical_accuracy(与categorical_accuracy相同,在对稀疏的目标值预测时有用 )

sparse_categorical_accuracy(y_true, y_pred)

4:top_k_categorical_accuracy(计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确 )

top_k_categorical_accuracy(y_true, y_pred, k=5)

5:sparse_top_k_categorical_accuracy(与top_k_categorical_accracy作用相同,但适用于稀疏情况)

sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)

以上这篇在keras里面实现计算f1-score的代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,f1-score

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com