圆月山庄资源网 Design By www.vgjia.com

groupby的函数定义:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

  • by :接收映射、函数、标签或标签列表;用于确定聚合的组。
  • axis : 接收 0/1;用于表示沿行(0)或列(1)分割。
  • level : 接收int、级别名称或序列,默认为None;如果轴是一个多索引(层次化),则按一个或多个特定级别分组。
  • as_index:接收布尔值,默认Ture;Ture则返回以组标签为索引的对象,False则不以组标签为索引。

其他的参数解释就看文档吧:链接:pandas.DataFrame.groupby 介绍文档

所见 1 :日常用法

import pandas as pd

df = pd.DataFrame({'Gender' : ['男', '女', '男', '男', '男', '男', '女', '女', '女'],
          'name' : ['周杰伦', '蔡依林', '林俊杰', '周杰伦', '林俊杰', '周杰伦', '田馥甄', '蔡依林', '田馥甄'],
          'income' : [4.5, 2.9, 3.8, 3.7, 4.0, 4.1, 1.9, 4.1, 3.2],
         'expenditure' : [1.5, 1.9, 2.8, 1.7, 4.1, 2.5, 1.1, 3.4, 1.2]
         })
#根据其中一列分组
df_expenditure_mean = df.groupby(['Gender']).mean()

#根据其中两列分组
df_expenditure_mean = df.groupby(['Gender', 'name']).mean()

#只对其中一列求均值
df_expenditure_mean = df.groupby(['Gender', 'name'])['income'].mean()

输出示例:

DataFrame.groupby()所见的各种用法详解

 所见 2 :解决groupby.sum() 后层级索引levels上移的问题

上图中的输出二,虽然是 DataFrame 的格式,但是若需要与其他表匹配的时候,这个格式就有些麻烦了。匹配数据时,我们需要的数据格式是:列名都在第一行,数据行中也不能有 Gender 列这样的合并单元格。因此,我们需要做一些调整,将 as_index 改为 False ,默认是 Ture 。

#不以组标签为索引,通过 as_index 来实现
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False).mean()


输出:

DataFrame.groupby()所见的各种用法详解

所见 3 :解决groupby.apply() 后层级索引levels上移的问题

在所见 2 中我们知道,使用参数 as_index 就可使 groupby 的结果不以组标签为索引,但是后来在使用 groupby.apply() 时发现,as_index 参数失去了效果。如下例所示:

# 使用了 as_index=False,但是从输出结果中可见没起到作用
df_apply = df.groupby(['Gender', 'name'], as_index=False).apply(lambda x: sum(x['income']-x['expenditure'])/sum(x['income']))
df_apply = pd.DataFrame(df_apply,columns=['存钱占比'])#转化成dataframe格式

输出:

DataFrame.groupby()所见的各种用法详解

解决办法: 加一句df_apply_index = df_apply.reset_index()

# 加一句df_apply_index = df_apply.reset_index()
df_apply = df.groupby(['Gender', 'name'], as_index=False).apply(lambda x: sum(x['income']-x['expenditure'])/sum(x['income']))
df_apply = pd.DataFrame(df_apply,columns=['存钱占比'])#转化成dataframe格式
df_apply_index = df_apply.reset_index()

输出:

DataFrame.groupby()所见的各种用法详解

所见 4 :groupby函数的分组结果保存成DataFrame

所见 1 中的输出三,明显是  Series ,我们需要将其转化为 DataFrame 格式的数据。

#只对其中一列求均值,并转化为 DataFrame
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False)['income'].mean()
df_expenditure_mean = pd.DataFrame(df_expenditure_mean)#转化成dataframe格式
df_expenditure_mean.rename(columns={'income':'收入均值'}, inplace = True)

输出:

DataFrame.groupby()所见的各种用法详解

标签:
DataFrame.groupby()用法,DataFrame,groupby

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。