1、image.load_img()
from keras.preprocessing import image img_keras = image.load_img('./original/dog/880.jpg') print(img_keras) img_keras = image.img_to_array(img_keras) print(img_keras[:,1,1])
效果如下:
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=256x384 at 0x2E6999D37B8> #image.load_img()只是加载了一个文件,没有形成numpy数组, #下面的numpy数组是通过image.img_to_array()的函数形成的 [108. 108. 110. 115. 119. 120. 122. 125. 127. 127. 129. 131. 132. 134. 1. 135. 138. 138. 139. 143. 141. 136. 132. 131. 135. 121. 103. 97. 2. 85. 69. 65. 69. 67. 74. 80. 77. 82. 92. 99. 105. 113. 3. 126. 128. 129. 132. 134. 135. 135. 135. 135. 134. 133. 131. 130. 4. 124. 122. 120. 119. 119. 121. 122. 123. 121. 120. 120. 122. 124. 5. 124. 123. 121. 120. 119. 119. 118. 116. 114. 121. 120. 117. 115. 6. 112. 111. 111. 114. 105. 104. 107. 104. 103. 106. 105. 101. 71. 7. 99. 99. 77. 71. 80. 69. 71. 69. 65. 63. 65. 64. 61. 8. 67. 74. 77. 79. 81. 79. 76. 78. 78. 77. 75. 77. 79. 9. 72. 68. 68. 67. 66. 64. 63. 61. 61. 57. 57. 56. 56. 10. 51. 45. 42. 34. 31. 28. 26. 27. 28. 28. 28. 29. 29. 11. 28. 27. 26. 25. 26. 24. 23. 22. 21. 21. 21. 22. 22. 12. 21. 21. 20. 20. 20. 19. 19. 19. 18. 18. 18. 18. 18. 13. 18. 18. 18. 17. 16. 14. 13. 12. 12. 10. 10. 10. 10. 14. 9. 9. 8. 10. 10. 10. 10. 12. 15. 18. 20. 23. 20. 15. 175. 229. 231. 230. 221. 219. 220. 227. 223. 213. 220. 227. 221. 16. 216. 219. 214. 197. 187. 179. 165. 175. 160. 175. 201. 206. 207. 17. 196. 178. 189. 207. 195. 190. 188. 152. 124. 97. 113. 179. 214. 18. 122. 172. 178. 204. 196. 200. 184. 167. 147. 112. 106. 131. 193. 19. 202. 188. 187. 199. 206. 207. 208. 172. 139. 147. 128. 130. 215. 20. 224. 221. 219. 217. 218. 206. 185. 158. 180. 174. 173. 142. 139. 21. 200. 202. 205. 174. 122. 119. 123. 120. 155. 206. 160. 191. 191. 22. 182. 158. 116. 66. 29. 6. 22. 47. 54. 53. 55. 61. 64. 23. 75. 80. 84. 86. 88. 87. 88. 89. 89. 88. 87. 86. 86. 24. 71. 174. 136. 13. 7. 38. 68. 77. 79. 80. 81. 81. 80. 25. 78. 77. 77. 77. 77. 76. 76. 76. 75. 74. 75. 75. 75. 26. 73. 71. 70. 68. 65. 62. 59. 57. 55. 52. 49. 46. 43. 27. 34. 31. 28. 25. 23.]
2、cv2.imread()
import cv2 img_cv2 = cv2.imread('./original/dog/880.jpg') print(img_cv2[:,1,1])
效果如下:
[108 108 110 115 119 120 122 125 127 127 129 131 132 134 134 135 138 138 139 143 141 136 132 131 135 121 103 97 97 85 69 65 69 67 74 80 77 82 92 99 105 113 120 126 128 129 132 134 135 135 135 135 134 133 131 130 126 124 122 120 119 119 121 122 123 121 120 120 122 124 124 124 123 121 120 119 119 118 116 114 121 120 117 115 113 112 111 111 114 105 104 107 104 103 106 105 101 71 72 99 99 77 71 80 69 71 69 65 63 65 64 61 62 67 74 77 79 81 79 76 78 78 77 75 77 79 76 72 68 68 67 66 64 63 61 61 57 57 56 56 54 51 45 42 34 31 28 26 27 28 28 28 29 29 28 28 27 26 25 26 24 23 22 21 21 21 22 22 21 21 21 20 20 20 19 19 19 18 18 18 18 18 18 18 18 18 17 16 14 13 12 12 10 10 10 10 9 9 9 8 10 10 10 10 12 15 18 20 23 20 27 175 229 231 230 221 219 220 227 223 213 220 227 221 220 216 219 214 197 187 179 165 175 160 175 201 206 207 207 196 178 189 207 195 190 188 152 124 97 113 179 214 147 122 172 178 204 196 200 184 167 147 112 106 131 193 218 202 188 187 199 206 207 208 172 139 147 128 130 215 228 224 221 219 217 218 206 185 158 180 174 173 142 139 151 200 202 205 174 122 119 123 120 155 206 160 191 191 192 182 158 116 66 29 6 22 47 54 53 55 61 64 69 75 80 84 86 88 87 88 89 89 88 87 86 86 92 71 174 136 13 7 38 68 77 79 80 81 81 80 79 78 77 77 77 77 76 76 76 75 74 75 75 75 74 73 71 70 68 65 62 59 57 55 52 49 46 43 38 34 31 28 25 23]
补充知识:keras报错:load_weights() got an unexpected keyword arguement 'skip_mmismatch'
网上下载了一个Yolo(keras+tensorflow)网络的训练代码,在运行的时候,报了以下错误:
load_weights() got an unexpected keyword arguement 'skip_mmismatch'。
在网上搜索了半天,也没有发现具体原因,最后,仔细看了看这句话的报错,因为我调用的是一个keras的内置函数,却报了没有这个参数的错,就想到了版本问题。最后将keras进行升级(我的升级到了2.1.5版本),这个问题就解决了。
总结:
在跑keras和tensorflow程序的时候遇到了好多次这种版本导致的问题。因为深度学习现在发展比较迅速,所以很多框架的API更新比较快,以后debug的时候一定要注意排查版本问题。
以上这篇浅谈cv2.imread()和keras.preprocessing中的image.load_img()区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 魔兽世界奥卡兹岛地牢入口在哪里 奥卡兹岛地牢入口位置一览
- 和文军-丽江礼物[2007]FLAC
- 陈随意2012-今生的伴[豪记][WAV+CUE]
- 罗百吉.2018-我们都一样【乾坤唱片】【WAV+CUE】
- 《怪物猎人:荒野》不加中配请愿书引热议:跪久站不起来了?
- 《龙腾世纪4》IGN 9分!殿堂级RPG作品
- Twitch新规禁止皮套外露敏感部位 主播直接“真身”出镜
- 木吉他.1994-木吉他作品全集【滚石】【WAV+CUE】
- 莫华伦.2022-一起走过的日子【京文】【WAV+CUE】
- 曾淑勤.1989-装在袋子里的回忆【点将】【WAV+CUE】
- 滚石香港黄金十年系列《赵传精选》首版[WAV+CUE][1.1G]
- 雷婷《乡村情歌·清新民谣》1:1母盘直刻[低速原抓WAV+CUE][1.1G]
- 群星 《DJ夜色魅影HQⅡ》天艺唱片[WAV+CUE][1.1G]
- 群星《烧透你的耳朵2》DXD金佰利 [低速原抓WAV+CUE][1.3G]
- 群星《难忘的回忆精选4》宝丽金2CD[WAV+CUE][1.4G]