项目中要对短文本进行相似度估计,word2vec是一个很火的工具。本文就word2vec的训练以及加载进行了总结。
word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档的语料库训练得到的词向量模型。
通过该模型可以对单词的相似度进行量化分析。
word2vec的训练方法有2种,一种是通过word2vec的官方手段,在linux环境下编译并执行。
在github上下载word2vec的安装包,然后make编译。查看demo-word.sh脚本,得到word2vec的执行命令:
./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
参数解释:
1)-train:需要训练的语料库,text8为语料库文件名
2)-output:输出的词向量文件,vectors.bin为输出词向量文件名,.bin后缀为二进制文件。若要以文档的形式查看词向量文件,需要将-binary参数的值由1改为0
3)-cbow:是否使用cbow模型进行训练。参数为1表示使用cbow,为0表示不使用cbow
4)-size:词向量的维数,默认为200维。
5)-window:训练过程中截取上下文的窗口大小,默认为8,即考虑一个词前8个和后8个词
6)-negative:若参数非0,表明采样随机负采样的方法,负样本子集的规模默认为25。若参数值为0,表示不使用随机负采样模型。使用随机负采样比Hierarchical Softmax模型效率更高。
7)-hs:是否采用基于Hierarchical Softmax的模型。参数为1表示使用,0表示不使用
8)-sample:语料库中的词频阈值参数,词频大于该阈值的词,越容易被采样。默认为e^-4.
9)-threads:开启的线程数目,默认为20.
10)-binary:词向量文件的输出形式。1表示输出二进制文件,0表示输出文本文件
11)-iter:训练的迭代次数。一定范围内,次数越高,训练得到的参数会更准确。默认值为15次.
./word2vec -train mytext.txt -output vectors.txt -cbow 1 -size 200 -window 5 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 0 -iter 30
示例为训练一个名mytext.txt的文档。设置输出词向量的格式为.txt文本文档,所以还需要将-binary参数设置为0.
训练模型采用基于随机负采样的cbow模型。由于短文本字数极为有限,所以-window参数设置为5,设置词向量的维数
为200,为了使得到的参数更准确,将迭代次数增加至30.其他参数使用默认值。
训练以后得到一个txt文本,该文本的内容为:每行一个单词,单词后面是对应的词向量。
gensim加载词向量:
保存词向量模型到pkl中(注意:这里是对词向量模型进行构建)
from gensim.models import KeyedVectors if not os.path.exists(pkl_path): # 如果pickle模型不存在,则构建一个 print '词向量模型不存在,开始构建词向量模型...' Word2Vec = KeyedVectors.load_word2vec_format(vecs_path, binary=False) # 加载词向量模型 f = file(pkl_path, 'wb') pickle.dump(Word2Vec, f, True) f.close() print '词向量模型构建完毕...' f= file(pkl_path, 'rb')# 打开pkl文件 word2vec=pickle.load(f)# 载入pkl
第二种方法是使用gensim模块训练词向量:
from gensim.models import Word2Vec from gensim.models.word2vec import LineSentence try: import cPickle as pickle except ImportError: import pickle sentences = LineSentence(path)# path为要训练的txt的路径 # 对sentences表示的语料库进行训练,训练200维的词向量,窗口大小设置为5,最小词频设置为5 model = Word2Vec(sentences, size=200, window=5, min_count=5) model.save(model_path)#model_path为模型路径。保存模型,通常采用pkl形式保存,以便下次直接加载即可 # 加载模型 model = Word2Vec.load(model_path)
完整的训练,加载通常采用如下方式:
if not os.path.exists(model_path): sentences = LineSentence(path) model = Word2Vec(sentences, size=200, window=5, min_count=5) model.save(model_path) model = Word2Vec.load(model_path)
这样一来,就可以通过pkl化的词向量模型进行读取了。pkl的目的是为了保存程序中变量的状态,以便下次直接访问,
不必重新训练模型。
详细内容间gensim官方库
https://radimrehurek.com/gensim/models/word2vec.html
以上这篇在python下实现word2vec词向量训练与加载实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 魔兽世界奥卡兹岛地牢入口在哪里 奥卡兹岛地牢入口位置一览
- 和文军-丽江礼物[2007]FLAC
- 陈随意2012-今生的伴[豪记][WAV+CUE]
- 罗百吉.2018-我们都一样【乾坤唱片】【WAV+CUE】
- 《怪物猎人:荒野》不加中配请愿书引热议:跪久站不起来了?
- 《龙腾世纪4》IGN 9分!殿堂级RPG作品
- Twitch新规禁止皮套外露敏感部位 主播直接“真身”出镜
- 木吉他.1994-木吉他作品全集【滚石】【WAV+CUE】
- 莫华伦.2022-一起走过的日子【京文】【WAV+CUE】
- 曾淑勤.1989-装在袋子里的回忆【点将】【WAV+CUE】
- 滚石香港黄金十年系列《赵传精选》首版[WAV+CUE][1.1G]
- 雷婷《乡村情歌·清新民谣》1:1母盘直刻[低速原抓WAV+CUE][1.1G]
- 群星 《DJ夜色魅影HQⅡ》天艺唱片[WAV+CUE][1.1G]
- 群星《烧透你的耳朵2》DXD金佰利 [低速原抓WAV+CUE][1.3G]
- 群星《难忘的回忆精选4》宝丽金2CD[WAV+CUE][1.4G]