batch很好理解,就是batch size。注意在一个epoch中最后一个batch大小可能小于等于batch size
dataset.repeat就是俗称epoch,但在tf中与dataset.shuffle的使用顺序可能会导致个epoch的混合
dataset.shuffle就是说维持一个buffer size 大小的 shuffle buffer,图中所需的每个样本从shuffle buffer中获取,取得一个样本后,就从源数据集中加入一个样本到shuffle buffer中。
import os os.environ['CUDA_VISIBLE_DEVICES'] = "" import numpy as np import tensorflow as tf np.random.seed(0) x = np.random.sample((11,2)) # make a dataset from a numpy array print(x) print() dataset = tf.data.Dataset.from_tensor_slices(x) dataset = dataset.shuffle(3) dataset = dataset.batch(4) dataset = dataset.repeat(2) # create the iterator iter = dataset.make_one_shot_iterator() el = iter.get_next() with tf.Session() as sess: print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el))
#源数据集 [[ 0.5488135 0.71518937] [ 0.60276338 0.54488318] [ 0.4236548 0.64589411] [ 0.43758721 0.891773 ] [ 0.96366276 0.38344152] [ 0.79172504 0.52889492] [ 0.56804456 0.92559664] [ 0.07103606 0.0871293 ] [ 0.0202184 0.83261985] [ 0.77815675 0.87001215] [ 0.97861834 0.79915856]] # 通过shuffle batch后取得的样本 [[ 0.4236548 0.64589411] [ 0.60276338 0.54488318] [ 0.43758721 0.891773 ] [ 0.5488135 0.71518937]] [[ 0.96366276 0.38344152] [ 0.56804456 0.92559664] [ 0.0202184 0.83261985] [ 0.79172504 0.52889492]] [[ 0.07103606 0.0871293 ] [ 0.97861834 0.79915856] [ 0.77815675 0.87001215]] #最后一个batch样本个数为3 [[ 0.60276338 0.54488318] [ 0.5488135 0.71518937] [ 0.43758721 0.891773 ] [ 0.79172504 0.52889492]] [[ 0.4236548 0.64589411] [ 0.56804456 0.92559664] [ 0.0202184 0.83261985] [ 0.07103606 0.0871293 ]] [[ 0.77815675 0.87001215] [ 0.96366276 0.38344152] [ 0.97861834 0.79915856]] #最后一个batch样本个数为3
1、按照shuffle中设置的buffer size,首先从源数据集取得三个样本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.4236548 0.64589411]
2、从buffer中取一个样本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
batch:
[ 0.4236548 0.64589411]
3、shuffle buffer不足三个样本,从源数据集提取一个样本:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.60276338 0.54488318]
[ 0.43758721 0.891773 ]
4、从buffer中取一个样本到batch中得:
shuffle buffer:
[ 0.5488135 0.71518937]
[ 0.43758721 0.891773 ]
batch:
[ 0.4236548 0.64589411]
[ 0.60276338 0.54488318]
5、如此反复。这就意味中如果shuffle 的buffer size=1,数据集不打乱。如果shuffle 的buffer size=数据集样本数量,随机打乱整个数据集
import os os.environ['CUDA_VISIBLE_DEVICES'] = "" import numpy as np import tensorflow as tf np.random.seed(0) x = np.random.sample((11,2)) # make a dataset from a numpy array print(x) print() dataset = tf.data.Dataset.from_tensor_slices(x) dataset = dataset.shuffle(1) dataset = dataset.batch(4) dataset = dataset.repeat(2) # create the iterator iter = dataset.make_one_shot_iterator() el = iter.get_next() with tf.Session() as sess: print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) [[ 0.5488135 0.71518937] [ 0.60276338 0.54488318] [ 0.4236548 0.64589411] [ 0.43758721 0.891773 ] [ 0.96366276 0.38344152] [ 0.79172504 0.52889492] [ 0.56804456 0.92559664] [ 0.07103606 0.0871293 ] [ 0.0202184 0.83261985] [ 0.77815675 0.87001215] [ 0.97861834 0.79915856]] [[ 0.5488135 0.71518937] [ 0.60276338 0.54488318] [ 0.4236548 0.64589411] [ 0.43758721 0.891773 ]] [[ 0.96366276 0.38344152] [ 0.79172504 0.52889492] [ 0.56804456 0.92559664] [ 0.07103606 0.0871293 ]] [[ 0.0202184 0.83261985] [ 0.77815675 0.87001215] [ 0.97861834 0.79915856]] [[ 0.5488135 0.71518937] [ 0.60276338 0.54488318] [ 0.4236548 0.64589411] [ 0.43758721 0.891773 ]] [[ 0.96366276 0.38344152] [ 0.79172504 0.52889492] [ 0.56804456 0.92559664] [ 0.07103606 0.0871293 ]] [[ 0.0202184 0.83261985] [ 0.77815675 0.87001215] [ 0.97861834 0.79915856]]
注意如果repeat在shuffle之前使用:
官方说repeat在shuffle之前使用能提高性能,但模糊了数据样本的epoch关系
import os os.environ['CUDA_VISIBLE_DEVICES'] = "" import numpy as np import tensorflow as tf np.random.seed(0) x = np.random.sample((11,2)) # make a dataset from a numpy array print(x) print() dataset = tf.data.Dataset.from_tensor_slices(x) dataset = dataset.repeat(2) dataset = dataset.shuffle(11) dataset = dataset.batch(4) # create the iterator iter = dataset.make_one_shot_iterator() el = iter.get_next() with tf.Session() as sess: print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) print(sess.run(el)) [[ 0.5488135 0.71518937] [ 0.60276338 0.54488318] [ 0.4236548 0.64589411] [ 0.43758721 0.891773 ] [ 0.96366276 0.38344152] [ 0.79172504 0.52889492] [ 0.56804456 0.92559664] [ 0.07103606 0.0871293 ] [ 0.0202184 0.83261985] [ 0.77815675 0.87001215] [ 0.97861834 0.79915856]] [[ 0.56804456 0.92559664] [ 0.5488135 0.71518937] [ 0.60276338 0.54488318] [ 0.07103606 0.0871293 ]] [[ 0.96366276 0.38344152] [ 0.43758721 0.891773 ] [ 0.43758721 0.891773 ] [ 0.77815675 0.87001215]] [[ 0.79172504 0.52889492] #出现相同样本出现在同一个batch中 [ 0.79172504 0.52889492] [ 0.60276338 0.54488318] [ 0.4236548 0.64589411]] [[ 0.07103606 0.0871293 ] [ 0.4236548 0.64589411] [ 0.96366276 0.38344152] [ 0.5488135 0.71518937]] [[ 0.97861834 0.79915856] [ 0.0202184 0.83261985] [ 0.77815675 0.87001215] [ 0.56804456 0.92559664]] [[ 0.0202184 0.83261985] [ 0.97861834 0.79915856]] #可以看到最后个batch为2,而前面都是4
使用案例:
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False): print('Parsing', filenames) def decode_libsvm(line): #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS) #features = dict(zip(CSV_COLUMNS, columns)) #labels = features.pop(LABEL_COLUMN) columns = tf.string_split([line], ' ') labels = tf.string_to_number(columns.values[0], out_type=tf.float32) splits = tf.string_split(columns.values[1:], ':') id_vals = tf.reshape(splits.values,splits.dense_shape) feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1) feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32) feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32) #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size]) #for i in range(splits.dense_shape.eval()[0]): # feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32)) # feat_vals.append(tf.string_to_number(splits.values[2*i+1])) #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels # Extract lines from input files using the Dataset API, can pass one filename or filename list dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000) # multi-thread pre-process then prefetch # Randomizes input using a window of 256 elements (read into memory) if perform_shuffle: dataset = dataset.shuffle(buffer_size=256) # epochs from blending together. dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) # Batch size to use #return dataset.make_one_shot_iterator() iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels return batch_features, batch_labels
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 魔兽世界奥卡兹岛地牢入口在哪里 奥卡兹岛地牢入口位置一览
- 和文军-丽江礼物[2007]FLAC
- 陈随意2012-今生的伴[豪记][WAV+CUE]
- 罗百吉.2018-我们都一样【乾坤唱片】【WAV+CUE】
- 《怪物猎人:荒野》不加中配请愿书引热议:跪久站不起来了?
- 《龙腾世纪4》IGN 9分!殿堂级RPG作品
- Twitch新规禁止皮套外露敏感部位 主播直接“真身”出镜
- 木吉他.1994-木吉他作品全集【滚石】【WAV+CUE】
- 莫华伦.2022-一起走过的日子【京文】【WAV+CUE】
- 曾淑勤.1989-装在袋子里的回忆【点将】【WAV+CUE】
- 滚石香港黄金十年系列《赵传精选》首版[WAV+CUE][1.1G]
- 雷婷《乡村情歌·清新民谣》1:1母盘直刻[低速原抓WAV+CUE][1.1G]
- 群星 《DJ夜色魅影HQⅡ》天艺唱片[WAV+CUE][1.1G]
- 群星《烧透你的耳朵2》DXD金佰利 [低速原抓WAV+CUE][1.3G]
- 群星《难忘的回忆精选4》宝丽金2CD[WAV+CUE][1.4G]