圆月山庄资源网 Design By www.vgjia.com

还有一种最流行的h5py.. 过几天更新

------------在python中导出矩阵至matlab------------

如果矩阵是mxn维的。 那么可以用 :

np.savetxt('dev_ivector.csv', dev_ivector, delimiter = ',')

对应matlab读取为:

dev_ivec = csvread('dev_ivector.csv') ###csv格式其实就内定了结构体

如果矩阵是(n,)这种格式。['aagj' 'aagy' 'aann' ... 'zzgm' 'zzhk' 'zzwn'] 类似这种。那么可以用

f = open('label','w')
for x in spk_mean_label:
  print(x)
  print(x,file=f)
f.close()

对应matlab读取为:

spk_mean_label = importdata('label')

第二种方法。 例如

import scipy.io
scipy.io.savemat('filename',

  mdict={ 'a':a,
  'b':b})

在matlab中只需要

load 'filename';

就导入了a矩阵和b矩阵

python存储矩阵

import pandas as pd
df = pd.DataFrame(a)
df.to_csv("score",sep=" ",index = False)

------------在matlab中导出矩阵至python------------

matlab里面得到矩阵后可以直接从工作区变量处保存为.mat文件。

然后在python中执行下面步骤

import scipy.io as sio

load_fn = 'plda_bl_score.mat'
load_data = sio.loadmat(load_fn)
blscores= load_data['PLDA_bl_scores']

然后blscores就是矩阵了。

第二种方法。

假如有俩个矩阵score,score1

save('score.mat','score','score1')

在python中

import scipy.io
matlab_data = scipy.io.loadmat('score.mat')
score = matlab_data['score']
score1 = matlab_data['score1']

补充知识:python如何输出矩阵的行数与列数?

对于pyhton里面所导入或者定义的矩阵或者表格数据,想要获得矩阵的行数和列数有以下方法:

1、利用shape函数输出矩阵的行和列

x.shape函数可以输出一个元组(m,n),其中元组的第一个数m表示矩阵的行数,元组的第二个数n为矩阵的列数

具体代码如下:

import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
# 输出数组的行和列数
print(x.shape) # (4, 3)
# 只输出行数
print(x.shape[0]) # 4
# 只输出列数
print (x.shape[1]) # 3

2、对于矩阵的行数,也可以使len(x)函数输出的矩阵长度,也就是所谓的行数。

import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
# 输出数组的行数
print(len(x)) #4

3、使用x.ndim函数可以输出矩阵维数,即列数

import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
# 输出数组的行数
print(x.ndim) #3

以上这篇matlab、python中矩阵的互相导入导出方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
matlab,python,矩阵,导入导出

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。