创建一个NN
import tensorflow as tf
import numpy as np
#fake data x = np.linspace(-1, 1, 100)[:, np.newaxis] #shape(100,1) noise = np.random.normal(0, 0.1, size=x.shape) y = np.power(x, 2) + noise #shape(100,1) + noise tf_x = tf.placeholder(tf.float32, x.shape) #input x tf_y = tf.placeholder(tf.float32, y.shape) #output y l = tf.layers.dense(tf_x, 10, tf.nn.relu) #hidden layer o = tf.layers.dense(l, 1) #output layer loss = tf.losses.mean_squared_error(tf_y, o ) #compute loss train_op = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)
1.使用save对模型进行保存
sess= tf.Session() sess.run(tf.global_variables_initializer()) #initialize var in graph saver = tf.train.Saver() # define a saver for saving and restoring for step in range(100): #train sess.run(train_op,{tf_x:x, tf_y:y}) saver.save(sess, 'params/params.ckpt', write_meta_graph=False) # mate_graph is not recommend
生成三个文件,分别是checkpoint,.ckpt.data-00000-of-00001,.ckpt.index
2.使用restore对提取模型
在提取模型时,需要将模型结构再定义一遍,再将各参数加载出来
#bulid entire net again and restore tf_x = tf.placeholder(tf.float32, x.shape) tf_y = tf.placeholder(tf.float32, y.shape) l_ = tf.layers.dense(tf_x, 10, tf.nn.relu) o_ = tf.layers.dense(l_, 1) loss_ = tf.losses.mean_squared_error(tf_y, o_) sess = tf.Session() # don't need to initialize variables, just restoring trained variables saver = tf.train.Saver() # define a saver for saving and restoring saver.restore(sess, './params/params.ckpt')
3.有时会报错Not found:b1 not found in checkpoint
这时我们想知道我在文件中到底保存了什么内容,即需要读取出checkpoint中的tensor
import os from tensorflow.python import pywrap_tensorflow checkpoint_path = os.path.join('params','params.ckpt') # Read data from checkpoint file reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() # Print tensor name and value f = open('params.txt','w') for key in var_to_shape_map: # write tensors' names and values in file print(key,file=f) print(reader.get_tensor(key),file=f) f.close()
运行后生成一个params.txt文件,在其中可以看到模型的参数。
补充知识:TensorFlow按时间保存检查点
一 实例
介绍一种更简便地保存检查点功能的方法——tf.train.MonitoredTrainingSession函数,该函数可以直接实现保存及载入检查点模型的文件。
演示使用MonitoredTrainingSession函数来自动管理检查点文件。
二 代码
import tensorflow as tf tf.reset_default_graph() global_step = tf.train.get_or_create_global_step() step = tf.assign_add(global_step, 1) with tf.train.MonitoredTrainingSession(checkpoint_dir='log/checkpoints',save_checkpoint_secs = 2) as sess: print(sess.run([global_step])) while not sess.should_stop(): i = sess.run( step) print( i)
三 运行结果
1 第一次运行后,会发现log文件夹下产生如下文件
2 第二次运行后,结果如下:
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Restoring parameters from log/checkpoints\model.ckpt-15147
INFO:tensorflow:Saving checkpoints for 15147 into log/checkpoints\model.ckpt.
[15147]
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
四 说明
本例是按照训练时间来保存的。通过指定save_checkpoint_secs参数的具体秒数,来设置每训练多久保存一次检查点。
可见程序自动载入检查点是从第15147次开始运行的。
五 注意
1 如果不设置save_checkpoint_secs参数,默认的保存时间是10分钟,这种按照时间保存的模式更适合用于使用大型数据集来训练复杂模型的情况。
2 使用该方法,必须要定义global_step变量,否则会报错误。
以上这篇tensorflow模型的save与restore,及checkpoint中读取变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 伍佰.2002-冬之火九重天演唱会特选录音专辑2CD【滚石】【WAV+CUE】
- 李宗盛1996《李宗盛的凡人歌2CD》滚石[WAV+CUE][1G]
- 刘德华 《天意》1:1直刻黑胶LPCD[WAV+CUE][1.1G]
- 刘德丽2024《赤的疑惑HQCD》头版限量编号MQA[低速原抓WAV+CUE]
- 英雄联盟万圣节有什么皮肤返场 2024万圣节皮肤返场一览
- lol万圣节赠礼活动什么时候开始 2024万圣节活动时间介绍
- 2024全球总决赛blg是全华班吗 全球总决赛blg选手所属国家介绍
- 《LOL》S14半决赛:T1战胜GEN晋级决赛!对决BLG
- 《完蛋美女前传》白白演员抱怨:都没人玩我的线
- 玩家热议OLED屏对画面提升巨大:比PS5 Pro值得买
- PatriciaPaay-TheLadyIsAChamp(ExpandedEdition)(2024)[24Bit-96kHz]FLAC
- 尚士达.2024-莫回头【智慧小狗】【DTS-WAV分轨】
- 区瑞强-黄金时代HQCDII头版限量wav
- 孙露《终于等到你》[WAV分轨][488M]
- 张信哲《歌时代》 潮水音乐 [WAV+CUE]