圆月山庄资源网 Design By www.vgjia.com

问题描述

有时在加载已训练好的模型时,会出现 out of memory 的错误提示,但仔细检测使用的GPU卡并没有再用且内存也没有超出。

经查阅发现原来是训练模型时使用的GPU卡和加载时使用的GPU卡不一样导致的。个人感觉,因为pytorch的模型中是会记录有GPU信息的,所以有时使用不同的GPU加载时会报错。

解决方法

gpu之间的相互转换。即,将训练时的gpu卡转换为加载时的gpu卡。

torch.load('modelparameters.pth', map_location={'cuda:1':'cuda:0'}) # gpu 1 --> gpu 0

当然,你也可以直接将加载模型时使用的gpu卡改为和训练时的一样。但在多人使用一个服务器时,你想用的gpu卡已被使用,就需按上面方法转换gpu。

拓展

cpu --> cpu 或 gpu --> gpu

checkpoint = torch.load('modelparameters.pth')
model.load_state_dict(checkpoint)

cpu --> gpu 0

torch.load('modelparameters.pth', map_location=lambda storage, loc: storage.cuda(0))

gpu --> cpu

torch.load('modelparameters.pth', map_location=lambda storage, loc: storage)

gpu 1 --> gpu 0

torch.load('modelparameters.pth', map_location={'cuda:1':'cuda:0'})

补充知识:pytorch model.cuda()花费时间很长

如果pytorch在进行model.cuda()操作需要花费的时间很长,长到你怀疑GPU的速度了,那就是不正常的。

如果你用的pytorch版本是0.3.0,升级到0.3.1就好了!

以上这篇pytorch模型载入之gpu和cpu互转操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,gpu,cpu,互转

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。