今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别。
我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5。同样是h5文件用save()和save_weight()保存效果是不一样的。
我们用宇宙最通用的数据集MNIST来做这个实验,首先设计一个两层全连接网络:
inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) y = Dense(10, activation='softmax')(x) model = Model(inputs=inputs, outputs=y)
然后,导入MNIST数据训练,分别用两种方式保存模型,在这里我还把未训练的模型也保存下来,如下:
from keras.models import Model from keras.layers import Input, Dense from keras.datasets import mnist from keras.utils import np_utils (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train=x_train.reshape(x_train.shape[0],-1)/255.0 x_test=x_test.reshape(x_test.shape[0],-1)/255.0 y_train=np_utils.to_categorical(y_train,num_classes=10) y_test=np_utils.to_categorical(y_test,num_classes=10) inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) y = Dense(10, activation='softmax')(x) model = Model(inputs=inputs, outputs=y) model.save('m1.h5') model.summary() model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=32, epochs=10) #loss,accuracy=model.evaluate(x_test,y_test) model.save('m2.h5') model.save_weights('m3.h5')
如上可见,我一共保存了m1.h5, m2.h5, m3.h5 这三个h5文件。那么,我们来看看这三个玩意儿有什么区别。首先,看看大小:
m2表示save()保存的模型结果,它既保持了模型的图结构,又保存了模型的参数。所以它的size最大的。
m1表示save()保存的训练前的模型结果,它保存了模型的图结构,但应该没有保存模型的初始化参数,所以它的size要比m2小很多。
m3表示save_weights()保存的模型结果,它只保存了模型的参数,但并没有保存模型的图结构。所以它的size也要比m2小很多。
通过可视化工具,我们发现:(打开m1和m2均可以显示出以下结构)
而打开m3的时候,可视化工具报错了。由此可以论证, save_weights()是不含有模型结构信息的。
加载模型
两种不同方法保存的模型文件也需要用不同的加载方法。
from keras.models import load_model model = load_model('m1.h5') #model = load_model('m2.h5') #model = load_model('m3.h5') model.summary()
只有加载m3.h5的时候,这段代码才会报错。其他输出如下:
可见,由save()保存下来的h5文件才可以直接通过load_model()打开!
那么,我们保存下来的参数(m3.h5)该怎么打开呢?
这就稍微复杂一点了,因为m3不含有模型结构信息,所以我们需要把模型结构再描述一遍才可以加载m3,如下:
from keras.models import Model from keras.layers import Input, Dense inputs = Input(shape=(784, )) x = Dense(64, activation='relu')(inputs) x = Dense(64, activation='relu')(x) y = Dense(10, activation='softmax')(x) model = Model(inputs=inputs, outputs=y) model.load_weights('m3.h5')
以上把m3换成m1和m2也是没有问题的!可见,save()保存的模型除了占用内存大一点以外,其他的优点太明显了。所以,在不怎么缺硬盘空间的情况下,还是建议大家多用save()来存。
注意!如果要load_weights(),必须保证你描述的有参数计算结构与h5文件中完全一致!什么叫有参数计算结构呢?就是有参数坑,直接填进去就行了。我们把上面的非参数结构换了一下,发现h5文件依然可以加载成功,比如将softmax换成relu,依然不影响加载。
对于keras的save()和save_weights(),完全没问题了吧
以上这篇浅谈keras保存模型中的save()和save_weights()区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 伍佰.2002-冬之火九重天演唱会特选录音专辑2CD【滚石】【WAV+CUE】
- 李宗盛1996《李宗盛的凡人歌2CD》滚石[WAV+CUE][1G]
- 刘德华 《天意》1:1直刻黑胶LPCD[WAV+CUE][1.1G]
- 刘德丽2024《赤的疑惑HQCD》头版限量编号MQA[低速原抓WAV+CUE]
- 英雄联盟万圣节有什么皮肤返场 2024万圣节皮肤返场一览
- lol万圣节赠礼活动什么时候开始 2024万圣节活动时间介绍
- 2024全球总决赛blg是全华班吗 全球总决赛blg选手所属国家介绍
- 《LOL》S14半决赛:T1战胜GEN晋级决赛!对决BLG
- 《完蛋美女前传》白白演员抱怨:都没人玩我的线
- 玩家热议OLED屏对画面提升巨大:比PS5 Pro值得买
- PatriciaPaay-TheLadyIsAChamp(ExpandedEdition)(2024)[24Bit-96kHz]FLAC
- 尚士达.2024-莫回头【智慧小狗】【DTS-WAV分轨】
- 区瑞强-黄金时代HQCDII头版限量wav
- 孙露《终于等到你》[WAV分轨][488M]
- 张信哲《歌时代》 潮水音乐 [WAV+CUE]