用matplotlib画二维图像时,默认情况下的横坐标和纵坐标显示的值有时达不到自己的需求,需要借助xticks()和yticks()分别对横坐标x-axis和纵坐标y-axis进行设置。
import numpy as np import matplotlib.pyplot as plt x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.show()
x坐标和y坐标都表示1到12的整数,不进行坐标设置时,执行效果为:
此时的x轴和y轴都是只显示偶数,其它的奇数未显示,这样在展示实验效果或放入文章中都会影响其可读性。
为了设置坐标轴的值,增加其可读性,有多种方法。这里介绍的是matplotlib的函数xticks()和yticks()。
参考文档:xticks()函数介绍 yticks()函数介绍
xticks()中有3个参数:
xticks(locs, [labels], **kwargs) # Set locations and labels
locs参数为数组参数(array_like, optional),表示x-axis的刻度线显示标注的地方,即ticks放置的地方,上述例子中,如果希望显示1到12所有的整数,就可以将locs参数设置为range(1,13,1),第二个参数也为数组参数(array_like, optional),可以不添加该参数,表示在locs数组表示的位置添加的标签,labels不赋值,在这些位置添加的数值即为locs数组中的数。
如下图
import numpy as np import matplotlib.pyplot as plt x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks(x) plt.show()
xticks()函数中,locs参数为数组x,即1到12所有的整数, 即画出的图像会在这12个位置画出ticks,即上图中的刻度线。
当赋予labels的值为空时,则在locs决定的位置上虽然会画出ticks,但不会显示任何值。
import numpy as np import matplotlib.pyplot as plt x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks(x,()) plt.show()
其效果为:
该例子中,会明显看到locs和labels的关系,locs表示位置,labels决定这些位置上的标签,labels的默认值为和locs相同。
所以,对于labels参数,我们可以赋予其任意其它的值,如人名,月份等等。
import numpy as np import matplotlib.pyplot as plt x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks(x, ('Tom','Dick','Harry','Sally','Sue','Lily','Ava','Isla','Rose','Jack','Leo','Charlie')) plt.show()
在每个标签会依次显示labels中的人名:
还可以显示月份:
import numpy as np import matplotlib.pyplot as plt import calendar x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks(x, calendar.month_name[1:13],color='blue',rotation=60) plt.show()
显示效果为:
这里添加了 calendar 模块,用于显示月份的名称。calendar.month_name[1:13]即1月份到12月份每个月份的名称的数组。后面的参数color='blue'表示将标签颜色置为蓝色,rotation表示标签逆时针旋转60度。
通过上个示例,可看出第3个参数关键字参数**kwargs用于控制labels,具体可通过Text属性中的定义,添加到该参数中,关于其定义可参考在 Text 查询。
另外,通过第1个参数locs可以看出,xticks()函数还可以用来设置使x轴上ticks隐藏,即将空数组赋予它,则没有tick会显示在x轴上,此处参考:x轴数值隐藏。
import numpy as np import matplotlib.pyplot as plt import calendar x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks([]) plt.show()
可看出x轴上没有tick显示:
同理,对于yticks()函数定义和xticks()函数定义完全相同。对于第一个例子,如果希望在y轴上的刻度线也显示1到12所有的整数,则将lens(1,13,1)赋予yticks()的locs参数即可:
import numpy as np import matplotlib.pyplot as plt import calendar x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks(x) plt.yticks(y) plt.show()
其效果为:
综上,可以设计一个x轴为月份,y为星期的图像:
import numpy as np import matplotlib.pyplot as plt import calendar from datetime import * x = range(1,13,1) y = range(1,13,1) plt.plot(x,y) plt.xticks(x, calendar.month_name[1:13],color='blue',rotation=60) today = datetime(2018, 9, 10) a=[] for i in range(12): a.append(calendar.day_name[today.weekday()+(i%7)]) plt.yticks(y,a,color='red') plt.show()
对应一月份选择星期一,二月份选择星期二,往后依次类推,直至将12个月安排完。
以上这篇python_matplotlib改变横坐标和纵坐标上的刻度(ticks)方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 群星.2003-存为爱2CD【环球】【WAV+CUE】
- 韩磊《试音天碟》高清音频[WAV+CUE]
- 邓涛《寂寞蒲公英(黑胶CD)》[WAV]
- 江志丰.2011-爱你的理由【豪记】【WAV+CUE
- 群星《传承-太平洋影音45周年纪念版 (CD2)》[320K/MP3][140.01MB]
- 群星《传承-太平洋影音45周年纪念版 (CD2)》[FLAC/分轨][293.29MB]
- 首首经典《滚石红人堂I 一人一首成名曲 4CD》[WAV+CUE][2.5G]
- s14上单t0梯度怎么排名 s14世界赛上单t0梯度排行榜
- tes目前进了几次s赛 LPL队伍tes参加全球总决赛次数总览
- 英雄联盟巅峰礼赠什么时候开始 2024巅峰礼赠活动时间介绍
- 冯骥发文谈睡觉重要性 网友打趣:求求你先做DLC
- 博主惊叹《少女前线2》万圣节大雷皮肤:这真能过审吗?
- 《生化危机8》夫人比基尼Mod再引骂战:夸张身材有错吗?
- 江蕙.1994-悲情歌声【点将】【WAV+CUE】
- 戴娆.2006-绽放【易柏文化】【WAV+CUE】