一、groupby 能做什么?
python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算!
对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下:
df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式——函数名称)
举例如下:
print(df["评分"].groupby([df["地区"],df["类型"]]).mean()) #上面语句的功能是输出表格所有数据中不同地区不同类型的评分数据平均值
二、单类分组
A.groupby("性别")
首先,我们有一个变量A,数据类型是DataFrame
想要按照【性别】进行分组
得到的结果是一个Groupby对象,还没有进行任何的运算。
describe()
描述组内数据的基本统计量
A.groupby("性别").describe().unstack()
* 只有数字类型的列数据才会计算统计
* 示例里面数字类型的数据有两列 【班级】和【身高】
但是,我们并不需要统计班级的均值等信息,只需要【身高】,所以做一下小的改动:
A.groupby("性别")["身高"].describe().unstack()
unstack()
索引重排
上面的例子里面用到了一个小的技巧,让运算结果更便于对比查看,感兴趣的同学可以自行去除unstack,比较一下显示的效果
三、多类分组
A.groupby( ["班级","性别"])
单独用groupby,我们得到的还是一个 Groupby 对象。
mean()
组内均值计算
DataFrame的很多函数可以直接运用到Groupby对象上。
上图截自 pandas 官网 document,这里就不一一细说。
我们还可以一次运用多个函数计算
A.groupby( ["班级","性别"]).agg([np.sum, np.mean, np.std]) # 一次计算了三个
agg()
分组多个运算
四、时间分组
时间序列可以直接作为index,或者有一列是时间序列,差别不是很大。
这里仅仅演示,某一列为时间序列。
为A 新增一列【生日】,由于分隔符 “/” 的问题,我们查看列属性,【生日】的属性并不是日期类型
我们想做的是:
1、按照【生日】的【年份】进行分组,看看有多少人是同龄?
A["生日"] = pd.to_datetime(A["生日"],format ="%Y/%m/%d") # 转化为时间格式 A.groupby(A["生日"].apply(lambda x:x.year)).count() # 按照【生日】的【年份】分组
进一步,我们想选拔:
2、同一年作为一个小组,小组内生日靠前的那一位作为小队长:
A.sort_values("生日", inplace=True) # 按时间排序 A.groupby(A["生日"].apply(lambda x:x.year),as_index=False).first()
as_index=False
保持原来的数据索引结果不变
first()
保留第一个数据
Tail(n=1)
保留最后n个数据
再进一步:
3、想要找到哪个月只有一个人过生日
A.groupby(A["生日"].apply(lambda x:x.month),as_index=False) # 到这里是按月分组 A.groupby(A["生日"].apply(lambda x:x.month),as_index=False).filter(lambda x: len(x)==1)
filter()
对分组进行过滤,保留满足()条件的分组
以上就是 groupby 最经常用到的功能了。
用 first(),tail()截取每组前后几个数据
用 apply()对每组进行(自定义)函数运算
用 filter()选取满足特定条件的分组
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 群星.2003-存为爱2CD【环球】【WAV+CUE】
- 韩磊《试音天碟》高清音频[WAV+CUE]
- 邓涛《寂寞蒲公英(黑胶CD)》[WAV]
- 江志丰.2011-爱你的理由【豪记】【WAV+CUE
- 群星《传承-太平洋影音45周年纪念版 (CD2)》[320K/MP3][140.01MB]
- 群星《传承-太平洋影音45周年纪念版 (CD2)》[FLAC/分轨][293.29MB]
- 首首经典《滚石红人堂I 一人一首成名曲 4CD》[WAV+CUE][2.5G]
- s14上单t0梯度怎么排名 s14世界赛上单t0梯度排行榜
- tes目前进了几次s赛 LPL队伍tes参加全球总决赛次数总览
- 英雄联盟巅峰礼赠什么时候开始 2024巅峰礼赠活动时间介绍
- 冯骥发文谈睡觉重要性 网友打趣:求求你先做DLC
- 博主惊叹《少女前线2》万圣节大雷皮肤:这真能过审吗?
- 《生化危机8》夫人比基尼Mod再引骂战:夸张身材有错吗?
- 江蕙.1994-悲情歌声【点将】【WAV+CUE】
- 戴娆.2006-绽放【易柏文化】【WAV+CUE】