圆月山庄资源网 Design By www.vgjia.com

代码如下

import numpy as np
from matplotlib import pyplot as plt
# 用numpy生成数据t ,y
t = np.arange(1,10,1)
y = 0.9 * t + np.sin(t)
model = np.polyfit(t, y ,deg=1) # np.polyfit是numpy提供的加分分析方法,deg=1,指定模型为1阶的,返回值model为获得的模型
t2 = np.arange(-2,12,0.5) # 再生成一个间隔为0.5的序列
ypredict = np.polyval(model, t2) # 由np.polyval预测y值序列
plt.plot(t, y, "o", t2, ypredict, 'x')
plt.show()

上面的一段代码利用numpy生成数据序列,并实现了1阶回归,并画出预测效果图,图形如下:

Python基于numpy模块实现回归预测

将代码改一下,实现2阶、3阶回归预测,只需要model = np.polyfit(t, y, deg =2)即可,同理3阶模型就把deg改为3即可。

2阶效果图和3阶效果图分别如下:

Python基于numpy模块实现回归预测

Python基于numpy模块实现回归预测

需要说明的是,并不是拟合的阶数越高,模型越好,本例使用2阶拟合效果比较好,如果使用3阶,会出现“过拟合”

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Python,numpy模块,回归预测

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。