input_signature的好处:
1.可以限定函数的输入类型,以防止调用函数时调错,
2.一个函数有了input_signature之后,在tensorflow里边才可以保存成savedmodel。在保存成savedmodel的过程中,需要使用get_concrete_function函数把一个tf.function标注的普通的python函数变成带有图定义的函数。
下面的代码具体体现了input_signature可以限定函数的输入类型这一作用。
@tf.function(input_signature=[tf.TensorSpec([None], tf.int32, name='x')]) def cube(z): #实现输入的立方 return tf.pow(z, 3) try: print(cube(tf.constant([1., 2., 3.]))) except ValueError as ex: print(ex) print(cube(tf.constant([1, 2, 3])))
输出:
Python inputs incompatible with input_signature:
inputs: (
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32))
input_signature: (
TensorSpec(shape=(None,), dtype=tf.int32, name='x'))
tf.Tensor([ 1 8 27], shape=(3,), dtype=int32)
get_concrete_function的使用
note:首先说明,下面介绍的函数在模型构建、模型训练的过程中不会用到,下面介绍的函数主要用在两个地方:1、如何保存模型 2、保存好模型后,如何载入进来。
可以给 由@tf.function标注的普通的python函数,给它加上input_signature, 从而让这个python函数变成一个可以保存的tensorflow图结构(SavedModel)
举例说明函数的用法:
@tf.function(input_signature=[tf.TensorSpec([None], tf.int32, name='x')]) def cube(z): return tf.pow(z, 3) try: print(cube(tf.constant([1., 2., 3.]))) except ValueError as ex: print(ex) print(cube(tf.constant([1, 2, 3]))) # @tf.function py func -> tf graph # get_concrete_function -> add input signature -> SavedModel cube_func_int32 = cube.get_concrete_function( tf.TensorSpec([None], tf.int32)) #tensorflow的类型 print(cube_func_int32)
输出:
<tensorflow.python.eager.function.ConcreteFunction object at 0x00000240E29695C0>
从输出结果可以看到:调用get_concrete_function函数后,输出的是一个ConcreteFunction对象
#看用新参数获得的对象与原来的对象是否一样 print(cube_func_int32 is cube.get_concrete_function( tf.TensorSpec([5], tf.int32))) #输入大小为5 print(cube_func_int32 is cube.get_concrete_function( tf.constant([1, 2, 3]))) #传具体数据
输出:
True
True
cube_func_int32.graph #图定义
输出:
[<tf.Operation 'x' type=Placeholder>, <tf.Operation 'Pow/y' type=Const>, <tf.Operation 'Pow' type=Pow>, <tf.Operation 'Identity' type=Identity>]
pow_op = cube_func_int32.graph.get_operations()[2] print(pow_op)
输出:
name: "Pow"
op: "Pow"
input: "x"
input: "Pow/y"
attr {
key: "T"
value {
type: DT_INT32
}
}
print(list(pow_op.inputs)) print(list(pow_op.outputs))
输出:
[<tf.Tensor 'x:0' shape=(None,) dtype=int32>, <tf.Tensor 'Pow/y:0' shape=() dtype=int32>]
[<tf.Tensor 'Pow:0' shape=(None,) dtype=int32>]
cube_func_int32.graph.get_operation_by_name("x")
输出:
<tf.Operation 'x' type=Placeholder>
cube_func_int32.graph.get_tensor_by_name("x:0") #默认加“:0”
<tf.Tensor 'x:0' shape=(None,) dtype=int32>
cube_func_int32.graph.as_graph_def() #总名字,针对上面两个
node { name: "x" op: "Placeholder" attr { key: "_user_specified_name" value { s: "x" } } attr { key: "dtype" value { type: DT_INT32 } } attr { key: "shape" value { shape { dim { size: -1 } } } } } node { name: "Pow/y" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 3 } } } } node { name: "Pow" op: "Pow" input: "x" input: "Pow/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "Identity" op: "Identity" input: "Pow" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 119 }
到此这篇关于tensorflow2.0的函数签名与图结构的文章就介绍到这了,更多相关tensorflow函数签名与图结构内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 群星.2003-存为爱2CD【环球】【WAV+CUE】
- 韩磊《试音天碟》高清音频[WAV+CUE]
- 邓涛《寂寞蒲公英(黑胶CD)》[WAV]
- 江志丰.2011-爱你的理由【豪记】【WAV+CUE
- 群星《传承-太平洋影音45周年纪念版 (CD2)》[320K/MP3][140.01MB]
- 群星《传承-太平洋影音45周年纪念版 (CD2)》[FLAC/分轨][293.29MB]
- 首首经典《滚石红人堂I 一人一首成名曲 4CD》[WAV+CUE][2.5G]
- s14上单t0梯度怎么排名 s14世界赛上单t0梯度排行榜
- tes目前进了几次s赛 LPL队伍tes参加全球总决赛次数总览
- 英雄联盟巅峰礼赠什么时候开始 2024巅峰礼赠活动时间介绍
- 冯骥发文谈睡觉重要性 网友打趣:求求你先做DLC
- 博主惊叹《少女前线2》万圣节大雷皮肤:这真能过审吗?
- 《生化危机8》夫人比基尼Mod再引骂战:夸张身材有错吗?
- 江蕙.1994-悲情歌声【点将】【WAV+CUE】
- 戴娆.2006-绽放【易柏文化】【WAV+CUE】