在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总
1.tf.reduce_sum
tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)
参数:
- input_tensor:要减少的张量。应该有数字类型。
- axis:要减小的尺寸。如果为None(默认),则缩小所有尺寸。必须在范围[-rank(input_tensor), rank(input_tensor))内。
- keep_dims:如果为true,则保留长度为1的缩小尺寸。
- name:操作的名称(可选)。
- reduction_indices:axis的废弃的名称。
返回:
该函数返回减少的张量,相当于np.sum
功能:
此函数计算一个张量的各个维度上元素的总和。
说明:
函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
举例:
x = tf.constant([[1, 1, 1], [1, 1, 1]]) tf.reduce_sum(x) # 6 tf.reduce_sum(x, 0) # [2, 2, 2] tf.reduce_sum(x, 1) # [3, 3] tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]] tf.reduce_sum(x, [0, 1]) # 6
2.reduce_min
reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
- input_tensor:减少的张量。应该有数字类型。
- axis:要减小的尺寸。如果为None(默认),则缩小所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
- keep_dims:如果为true,则保留长度为1的缩小维度。
- name:操作的名称(可选)。
- reduction_indices:axis的废弃的名称。
返回:
该函数返回减少的张量,相当于np.min
功能:
tf.reduce_min函数用来计算一个张量的各个维度上元素的最小值。
说明:
同样按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
3.reduce_max
reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
- input_tensor:要减少的张量。应该有数字类型。
- axis:要减小的尺寸。如果为 None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
- keep_dims:如果为true,则保留长度为1的减少维度。
- name:操作的名称(可选)。
- reduction_indices:axis的废弃的名称。
返回:
该函数返回减少的张量,相当于np.max。
功能:
计算一个张量的各个维度上元素的最大值。
说明:
按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。
4.reduce_mean
reduce_mean
5.reduce_all
reduce_all(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
- input_tensor:要减少的张量。应该有数字类型。
- axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
- keep_dims:如果为true,则保留长度为1的缩小尺寸。
- name:操作的名称(可选)。
- reduction_indices:axis的不支持使用的名称。
返回:
该函数返回减少的张量,相当于np.mean
功能:
计算张量的各个维度上的元素的平均值。
说明:
axis是tf.reduce_mean函数中的参数,按照函数中axis给定的维度减少input_tensor。除非keep_dims是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。 如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。
举例:
x = tf.constant([[1., 1.], [2., 2.]]) tf.reduce_mean(x) # 1.5 tf.reduce_mean(x, 0) # [1.5, 1.5] tf.reduce_mean(x, 1) # [1., 2.]
6.reduce_any
reduce_any(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
- input_tensor:要减少的布尔张量。
- axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在范围[-rank(input_tensor), rank(input_tensor))内。
- keep_dims:如果为true,则保留长度为1的缩小维度。
- name:操作的名称(可选)。
- reduction_indices:axis的已经弃用的名称。
返回:
减少张量,相当于np.any
功能:
在张量的维度上计算元素的 "逻辑或"。
说明:
按照axis给定的维度减少input_tensor。除非 keep_dims 是 true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。如果axis没有条目,则会减少所有维度,并返回具有单个元素的张量。
举例:
x = tf.constant([[True, True], [False, False]]) tf.reduce_any(x) # True tf.reduce_any(x, 0) # [True, True] tf.reduce_any(x, 1) # [True, False]
7.reduce_logsumexp
reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
- input_tensor:张量减少。应该有数字类型。
- axis:要减小的维度。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
- keep_dims:如果为true,则保留长度为1的减少尺寸。
- name:操作的名称(可选)。
- reduction_indices:axis的弃用名称。
返回:
减少的张量。
功能:
计算log(sum(exp(张量的各维数的元素)))。
说明:
按照给定的axis上的维度减少input_tensor。除非keep_dims是true,否则张量的秩在axis上的每一项都减少1。如果keep_dims为 true,则减少的尺寸将保留为1。如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。这个函数在数值上比 log(sum(exp(input)))更稳定。它避免了大量输入的 exp 引起的溢出和小输入日志带来的下溢。
举例:
x = tf.constant([[0., 0., 0.], [0., 0., 0.]]) tf.reduce_logsumexp(x) # log(6) tf.reduce_logsumexp(x, 0) # [log(2), log(2), log(2)] tf.reduce_logsumexp(x, 1) # [log(3), log(3)] tf.reduce_logsumexp(x, 1, keep_dims=True) # [[log(3)], [log(3)]] tf.reduce_logsumexp(x, [0, 1]) # log(6)
8.reduce_prod
reduce_prod(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
- input_tensor:要减少的张量。应该有数字类型。
- axis:要减小的尺寸。如果为None(默认),则将缩小所有尺寸。必须在[-rank(input_tensor), rank(input_tensor))范围内。
- keep_dims:如果为true,则保留长度为1的缩小维度。
- name:操作的名称(可选)。
- reduction_indices:axis的废弃的名称。
返回:
结果返回减少的张量,相当于np.prod
功能:
此函数计算一个张量的各个维度上元素的乘积。
说明:
函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]