圆月山庄资源网 Design By www.vgjia.com
周五的时候计算出来一条线路,但是计算出来的只是类似与
0->10->19->2->..0
这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。
&esp;"htmlcode">
import matplotlib.pyplot as plt import numpy import matplotlib.colors as colors import matplotlib.cm as cmx
后面两个主要是用于处理颜色的。
准备数据
_locations = [ (4, 4), # depot (4, 4), # unload depot_prime (4, 4), # unload depot_second (4, 4), # unload depot_fourth (4, 4), # unload depot_fourth (4, 4), # unload depot_fifth (2, 0), (8, 0), # locations to visit (0, 1), (1, 1), (5, 2), (7, 2), (3, 3), (6, 3), (5, 5), (8, 5), (1, 6), (2, 6), (3, 7), (6, 7), (0, 8), (7, 8) ]
画图
plt.figure(figsize=(10, 10)) p1 = [l[0] for l in _locations] p2 = [l[1] for l in _locations] plt.plot(p1[:6], p2[:6], 'g*', ms=20, label='depot') plt.plot(p1[6:], p2[6:], 'ro', ms=15, label='customer') plt.grid(True) plt.legend(loc='lower left') way = [[0, 12, 18, 17, 16, 4, 14, 10, 11, 13, 5], [0, 6, 9, 8, 20, 3], [0, 19, 21, 15, 7, 2]] # cmap = plt.cm.jet cNorm = colors.Normalize(vmin=0, vmax=len(way)) scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap) for k in range(0, len(way)): way0 = way[k] colorVal = scalarMap.to_rgba(k) for i in range(0, len(way0)-1): start = _locations[way0[i]] end = _locations[way0[i+1]] # plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True, # head_width=0.2, head_length=0.3, fc='k', ec='k', lw=2, ls=lineStyle[k], color='red') plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True, head_width=0.2, lw=2, color=colorVal) plt.show()
cmap = plt.cm.jet cNorm = colors.Normalize(vmin=0, vmax=len(way)) scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)
cmap可以理解为颜色库,cNorm设置颜色的范围,有几条线路就设置几种颜色,scalarMap颜色生成完毕。最后在绘图的时候,根据索引获得相应的颜色就可以了。
结果如下:
补充知识:Python包matplotlib绘图--如何标注某点--附代码
# -*- coding: utf-8 -*- import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np plt.style.use('classic') plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示 plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示 x=np.array([1,2,3,4,5,6,7,8]) y1=np.array([3,5,35,300,800,600,1200,4000]) y2=np.array([8,14,94,703,1300,1660,2801,12768]) fig1 = plt.figure() ax = plt.axes() ax.plot(x, y2,label='时间/秒') ax.set(xlabel='目标函数个数', ylabel='程序运行时间',title='多目标收敛速度') plt.hlines(703, 0, 4, colors='r', linestyle="--") plt.text(0, 703, "703") plt.hlines(1300, 0, 5, colors='g', linestyle="--") plt.text(0, 1300, "1300") # annotate plt.annotate("703秒", (4,703), xycoords='data', xytext=(4.2, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("94秒", (3,94), xycoords='data', xytext=(3.5, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("14秒", (2,14), xycoords='data', xytext=(2.5, 2000), arrowprops=dict(arrowstyle='->')) plt.annotate("8秒", (1,8), xycoords='data', xytext=(1.5, 2000), arrowprops=dict(arrowstyle='->')) plt.legend() plt.show() fig1.savefig('my_figure1.png')
import numpy as np from matplotlib import pyplot as plt from matplotlib.path import Path from matplotlib.patches import PathPatch # Use seaborn to change the default graphics to something nicer import seaborn as sns # And set a nice color palette sns.set_color_codes('deep') # Create the plot object fig, ax = plt.subplots(figsize=(5, 4)) x = np.linspace(0, 1000) # Add finishing constraint: x2 <= 100/2 - x1/2 plt.plot(x, 50/4 - 3*x/4, linewidth=3, label='First constraint') plt.fill_between(x, 0, 100/2 - x/2, alpha=0.1) # Add carpentry constraint: x2 <= 80 - x1 plt.plot(x, 30 - 2*x, linewidth=3, label='Second constraint') plt.fill_between(x, 0, 100 - 2*x, alpha=0.1) # Add non-negativity constraints plt.plot(np.zeros_like(x), x, linewidth=3, label='$x$ Sign restriction') plt.plot(x, np.zeros_like(x), linewidth=3, label='$y$ Sign restriction') #==================================================== # This part is different from giapetto_feasible.py # Plot the possible (x1, x2) pairs pairs = [(x, y) for x in np.arange(101) for y in np.arange(101) if (300*x + 400*y) <= 5000 and (200*x + 100*y) <= 3000] # Split these into our variables chairs, tables = np.hsplit(np.array(pairs), 2) # Caculate the objective function at each pair z =8*chairs + 9*tables # Plot the results plt.scatter(chairs, tables, c=z, cmap='jet', edgecolor='gray', alpha=0.5, label='Profit at each point', zorder=3) # Colorbar cb = plt.colorbar() cb.set_label('Profit Colormap ($)') #==================================================== # Labels and stuff plt.xlabel('Package A') plt.ylabel('Package B') plt.xlim(-0.5, 20) plt.ylim(-0.5, 20) plt.legend() fig01 = plt.figure() plt.show()
以上这篇使用Matplotlib绘制不同颜色的带箭头的线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月25日
2025年01月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]