圆月山庄资源网 Design By www.vgjia.com

周五的时候计算出来一条线路,但是计算出来的只是类似与

0->10->19->2->..0

这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。

&esp;"htmlcode">

import matplotlib.pyplot as plt
import numpy
import matplotlib.colors as colors
import matplotlib.cm as cmx

后面两个主要是用于处理颜色的。

准备数据

 _locations = [
    (4, 4), # depot
    (4, 4), # unload depot_prime
    (4, 4), # unload depot_second
    (4, 4), # unload depot_fourth
    (4, 4), # unload depot_fourth
    (4, 4), # unload depot_fifth
    (2, 0),
    (8, 0), # locations to visit
    (0, 1),
    (1, 1),
    (5, 2),
    (7, 2),
    (3, 3),
    (6, 3),
    (5, 5),
    (8, 5),
    (1, 6),
    (2, 6),
    (3, 7),
    (6, 7),
    (0, 8),
    (7, 8)
  ]

画图

plt.figure(figsize=(10, 10))
p1 = [l[0] for l in _locations]
p2 = [l[1] for l in _locations]
plt.plot(p1[:6], p2[:6], 'g*', ms=20, label='depot')
plt.plot(p1[6:], p2[6:], 'ro', ms=15, label='customer')
plt.grid(True)
plt.legend(loc='lower left')

way = [[0, 12, 18, 17, 16, 4, 14, 10, 11, 13, 5], [0, 6, 9, 8, 20, 3], [0, 19, 21, 15, 7, 2]]  # 

cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(way))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)

for k in range(0, len(way)):
  way0 = way[k]
  colorVal = scalarMap.to_rgba(k)
  for i in range(0, len(way0)-1):
    start = _locations[way0[i]]
    end = _locations[way0[i+1]]
#     plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True,
#         head_width=0.2, head_length=0.3, fc='k', ec='k', lw=2, ls=lineStyle[k], color='red')
    plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], 
         length_includes_head=True, head_width=0.2, lw=2,
         color=colorVal)
plt.show()
cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(way))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)

cmap可以理解为颜色库,cNorm设置颜色的范围,有几条线路就设置几种颜色,scalarMap颜色生成完毕。最后在绘图的时候,根据索引获得相应的颜色就可以了。

结果如下:

使用Matplotlib绘制不同颜色的带箭头的线实例

补充知识:Python包matplotlib绘图--如何标注某点--附代码

使用Matplotlib绘制不同颜色的带箭头的线实例

# -*- coding: utf-8 -*-
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('classic')

plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示

x=np.array([1,2,3,4,5,6,7,8])
y1=np.array([3,5,35,300,800,600,1200,4000])
y2=np.array([8,14,94,703,1300,1660,2801,12768])

fig1 = plt.figure()

ax = plt.axes()
ax.plot(x, y2,label='时间/秒')
ax.set(xlabel='目标函数个数', ylabel='程序运行时间',title='多目标收敛速度')

plt.hlines(703, 0, 4, colors='r', linestyle="--")
plt.text(0, 703, "703")
plt.hlines(1300, 0, 5, colors='g', linestyle="--")
plt.text(0, 1300, "1300")

# annotate 
plt.annotate("703秒", (4,703), xycoords='data',
       xytext=(4.2, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.annotate("94秒", (3,94), xycoords='data',
       xytext=(3.5, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.annotate("14秒", (2,14), xycoords='data',
       xytext=(2.5, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.annotate("8秒", (1,8), xycoords='data',
       xytext=(1.5, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.legend()
plt.show()
fig1.savefig('my_figure1.png')

使用Matplotlib绘制不同颜色的带箭头的线实例

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch

# Use seaborn to change the default graphics to something nicer
import seaborn as sns
# And set a nice color palette
sns.set_color_codes('deep')

# Create the plot object
fig, ax = plt.subplots(figsize=(5, 4))
x = np.linspace(0, 1000)

# Add finishing constraint: x2 <= 100/2 - x1/2
plt.plot(x, 50/4 - 3*x/4, linewidth=3, label='First constraint')
plt.fill_between(x, 0, 100/2 - x/2, alpha=0.1)

# Add carpentry constraint: x2 <= 80 - x1
plt.plot(x, 30 - 2*x, linewidth=3, label='Second constraint')
plt.fill_between(x, 0, 100 - 2*x, alpha=0.1)

# Add non-negativity constraints
plt.plot(np.zeros_like(x), x, linewidth=3, label='$x$ Sign restriction')
plt.plot(x, np.zeros_like(x), linewidth=3, label='$y$ Sign restriction')

#====================================================
# This part is different from giapetto_feasible.py
# Plot the possible (x1, x2) pairs
pairs = [(x, y) for x in np.arange(101)
        for y in np.arange(101)
        if (300*x + 400*y) <= 5000
        and (200*x + 100*y) <= 3000]

# Split these into our variables
chairs, tables = np.hsplit(np.array(pairs), 2)

# Caculate the objective function at each pair
z =8*chairs + 9*tables

# Plot the results
plt.scatter(chairs, tables, c=z, cmap='jet', edgecolor='gray', alpha=0.5, label='Profit at each point', zorder=3)

# Colorbar
cb = plt.colorbar()
cb.set_label('Profit Colormap ($)')
#====================================================

# Labels and stuff
plt.xlabel('Package A')
plt.ylabel('Package B')
plt.xlim(-0.5, 20)
plt.ylim(-0.5, 20)
plt.legend()
fig01 = plt.figure()
plt.show()

以上这篇使用Matplotlib绘制不同颜色的带箭头的线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Matplotlib,不同颜色,箭头

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。