今天在intellij调试spark的时候感觉每次有新的一段代码,都要重新跑一遍,如果用spark-shell,感觉也不是特别方便,如果能像python那样,使用jupyter notebook进行编程就很方便了,同时也适合代码展示,网上查了一下,试了一下,碰到了很多坑,有些是旧的版本,还有些是版本不同导致错误,这里就记录下来安装的过程。
1.运行环境
硬件:Mac
事先装好:Jupyter notebook,spark2.1.0,scala 2.11.8 (这个版本很重要,关系到后面的安装)
2.安装
2.1.scala kernel
从github下载
git clone https://github.com/jupyter-scala/jupyter-scala.git
进入下载的jupyter-scala目录下,运行
bash jupyter-scala
然后查看
jupyter kernelspec list
表示scala已经嵌入到jupyter notebook
2.2.spark kernel
这个也比较好装,但是要注意版本问题,我们用的是toree来装的,首先要安装toree
网上的教程通常直接
pip install toree
但是这个下载的是0.1.0版本,该版本的话问题是,后面装spark kernel后,在jupyter运行spark的时候,默认选的是scala2.10.4版本,会有以下的错误
[I 03:15:16.677 NotebookApp] Kernel started: 94a63354-d294-4de7-a12c-2e05905e0c45 Starting Spark Kernel with SPARK_HOME=/usr/local/spark 16/11/20 03:15:18 [INFO] o.a.t.Main$$anon$1 - Kernel version: 0.1.0.dev8-incubating-SNAPSHOT 16/11/20 03:15:18 [INFO] o.a.t.Main$$anon$1 - Scala version: Some(2.10.4) 16/11/20 03:15:18 [INFO] o.a.t.Main$$anon$1 - ZeroMQ (JeroMQ) version: 3.2.2 16/11/20 03:15:18 [INFO] o.a.t.Main$$anon$1 - Initializing internal actor system Exception in thread "main" java.lang.NoSuchMethodError: scala.collection.immutable.HashSet$.empty()Lscala/collection/immutable/HashSet; at akka.actor.ActorCell$.<init>(ActorCell.scala:336) at akka.actor.ActorCell$.<clinit>(ActorCell.scala) at akka.actor.RootActorPath.$div(ActorPath.scala:185) at akka.actor.LocalActorRefProvider.<init>(ActorRefProvider.scala:465) at akka.actor.LocalActorRefProvider.<init>(ActorRefProvider.scala:453) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at akka.actor.ReflectiveDynamicAccess$$anonfun$createInstanceFor$2.apply(DynamicAccess.scala:78) at scala.util.Try$.apply(Try.scala:192) at akka.actor.ReflectiveDynamicAccess.createInstanceFor(DynamicAccess.scala:73) at akka.actor.ReflectiveDynamicAccess$$anonfun$createInstanceFor$3.apply(DynamicAccess.scala:84) at akka.actor.ReflectiveDynamicAccess$$anonfun$createInstanceFor$3.apply(DynamicAccess.scala:84) at scala.util.Success.flatMap(Try.scala:231) at akka.actor.ReflectiveDynamicAccess.createInstanceFor(DynamicAccess.scala:84) at akka.actor.ActorSystemImpl.liftedTree1$1(ActorSystem.scala:585) at akka.actor.ActorSystemImpl.<init>(ActorSystem.scala:578) at akka.actor.ActorSystem$.apply(ActorSystem.scala:142) at akka.actor.ActorSystem$.apply(ActorSystem.scala:109) at org.apache.toree.boot.layer.StandardBareInitialization$class.createActorSystem(BareInitialization.scala:71) at org.apache.toree.Main$$anon$1.createActorSystem(Main.scala:35) at org.apache.toree.boot.layer.StandardBareInitialization$class.initializeBare(BareInitialization.scala:60) at org.apache.toree.Main$$anon$1.initializeBare(Main.scala:35) at org.apache.toree.boot.KernelBootstrap.initialize(KernelBootstrap.scala:72) at org.apache.toree.Main$delayedInit$body.apply(Main.scala:40) at scala.Function0$class.apply$mcV$sp(Function0.scala:34) at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12) at scala.App$$anonfun$main$1.apply(App.scala:76) at scala.App$$anonfun$main$1.apply(App.scala:76) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35) at scala.App$class.main(App.scala:76) at org.apache.toree.Main$.main(Main.scala:24) at org.apache.toree.Main.main(Main.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) [W 03:15:26.738 NotebookApp] Timeout waiting for kernel_info reply from 94a63354-d294-4de7-a12c-2e05905e0c45
这个错误太可怕了,就是版本不对,因为spark2.1.0对应的是scala2.11版本的
所以要用下面的方式下载0.2.0版本
pip install https://dist.apache.org/repos/dist/dev/incubator/toree/0.2.0/snapshots/dev1/toree-pip/toree-0.2.0.dev1.tar.gz
后面就可以安装spark kernel了
jupyter toree install --interpreters=Scala --spark_home=/usr/local/Cellar/apache-spark/2.1.0/libexec --user --kernel_name=apache_toree --interpreters=PySpark,SparkR,Scala,SQL
其中spark_home指的是你的spark的安装目录,记住这个安装目录必须到spark中有python之前,比如我的spark中的python(spark中的python文件夹,不是我们自己装的那个)在 /usr/local/Cellar/apache-spark/2.1.0/libexec
查看结果
jupyter kernelspec list
安装成功
3.打开jupyter notebook查看效果
有这么多选项,可以快乐的用jupyter notebook进行spark了
以上这篇Jupyter notebook运行Spark+Scala教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 完美倒立.2024-夜色碳酸【草台回声】【FLAC分轨】
- 杨青《半山听雨贰HQ》头版限量编号[低速原抓WAV+CUE]
- 白玛多吉《云上西藏1+2》DTS-WAV
- 模拟之声慢刻CD《柏林之声3》[正版CD原抓WAV+CUE]
- 威神V(WayV)《The Highest》[FLAC/分轨][259.1MB]
- 余超颖《迷焕纪》[320K/MP3][201.15MB]
- 余超颖《迷焕纪》[FLAC/分轨][784.22MB]
- 温岚.2005-爱回温新歌加精选2CD【阿尔发】【WAV+CUE】
- 尤雅.1990-台语怀念金曲特选辑【太阳神】【WAV+CUE】
- 群星.2024-七夜雪电视剧影视原声带【听见时代】【FLAC分轨】
- 群星《胎教音乐 古典钢琴曲与水晶摇篮曲》[320K/MP3][134.14MB]
- 群星《胎教音乐 古典钢琴曲与水晶摇篮曲》[FLAC/分轨][654.13MB]
- 许惠钧《睡眠钢琴与校园民歌金曲 空灵新世纪催眠曲》[320K/MP3][201.15MB]
- wbg战队国籍分别都是哪里的 wbg战队2024阵容国籍介绍
- wbg战队教练是韩国人吗 s14wbg战队教练国籍介绍