wordcloud是Python扩展库中一种将词语用图片表达出来的一种形式,通过词云生成的图片,我们可以更加直观的看出某篇文章的故事梗概。
首先贴出一张词云图(以哈利波特小说为例):
在生成词云图之前,首先要做一些准备工作
1.安装结巴分词库
pip install jieba
Python中的分词模块有很多,他们的功能也都是大同小异,我们安装的结巴分词 是当前使用的最多的类型。
下面我来简单介绍一下结巴分词的用法
结巴分词的分词模式分为三种:
(1)全模式:把句子中所有的可以成词的词语都扫描出来, 速度快,但是不能解决歧义问题
(2)精确模式:将句子最精确地切开,适合文本分析
(3)搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词
下面用一个简单的例子来看一下三种模式的分词区别:
import jieba # 全模式:把句子中所有的可以成词的词语都扫描出来, 速度快,但是不能解决歧义问题 text = "哈利波特是一常优秀的文学作品" seg_list = jieba.cut(text, cut_all=True) print(u"[全模式]: ", "/ ".join(seg_list)) # 精确模式:将句子最精确地切开,适合文本分析 seg_list = jieba.cut(text, cut_all=False) print(u"[精确模式]: ", "/ ".join(seg_list)) # 默认是精确模式 seg_list = jieba.cut(text) print(u"[默认模式]: ", "/ ".join(seg_list)) # 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词 seg_list = jieba.cut_for_search(text) print(u"[搜索引擎模式]: ", "/ ".join(seg_list))
下面是对这句话的分词方式:
通过这三种分词模式可以看出,这些分词模式并没有很好的划分出“哈利波特”这个专有名词,这是因为在结巴分词的字典中并没有记录这个名词,所以需要我们手动添加自定义字典
添加自定义字典:找一个方便引用的位置 (下图的路径是我安装的位置),新建文本文档(后缀名为.txt),将想添加的词输入进去(注意输入格式),保存并退出
在上面的代码中加入自定义字典的路径,再点击运行
jieba.load_userdict("/home/jmhao/anaconda3/lib/python3.7/site-packages/jieba/mydict.txt")
分词结果,可以看出“哈利波特”这个词已经被识别出来了
结巴分词还有另一个禁用词的输出结果
stopwords = {}.fromkeys(['优秀', '文学作品']) #添加禁用词之后 seg_list = jieba.cut(text) final = '' for seg in seg_list: if seg not in stopwords: final += seg seg_list_new = jieba.cut(final) print(u"[切割之后]: ", "/ ".join(seg_list_new))
可以看到输出结果中并没有“优秀”和“文学作品”两个词
结巴分词还有很多比较复杂的操作,具体的可以去官网查看,我就不再过多的赘述了
下面我们正式开始词云的制作
首先下载模块,这里我所使用的环境是Anaconda,由于Anaconda中包含很多常用的扩展包,所以这里只需要下载wordcloud。若使用的环境不是Anaconda,则另需安装numpy和PIL模块
pip install wordcloud
然后我们需要找一篇文章并使用结巴分词将文章分成词语的形式
# 分词模块 def cut(text): # 选择分词模式 word_list = jieba.cut(text,cut_all= True) # 分词后在单独个体之间加上空格 result = " ".join(word_list) # 返回分词结果 return result
这里我在当前文件夹下创建了一个文本文档“xiaoshuo.txt”,并复制了一章的小说作为词云的主体文字
使用代码控制,打开并读取小说的内容
#导入文本文件,进行分词,制作词云 with open("xiaoshuo.txt") as fp: text = fp.read() # 将读取的中文文档进行分词 text = cut(text)
在网上找到一张白色背景的图片下载到当前文件夹,作为词云的背景图(若不指定图片,则默认生成矩形词云)
#设置词云形状,若设置了词云的形状,生成的词云与图片保持一致,后面设置的宽度和高度将默认无效 mask = np.array(image.open("monkey.jpeg"))
接下来可以根据喜好来定义词云的颜色、轮廓等参数 下面为常用的参数设置方法
font_path : "字体路径" 词云的字体样式,若要输出中文,则跟随中文的字体 width = n 画布宽度,默认为400像素 height = n 画布高度,默认为400像素 scale = n 按比例放大或缩小画布 min_font_size = n 设置最小的字体大小 max_font_size = n 设置最大的字体大小 stopwords = 'words' 设置要屏蔽的词语 background_color = ''color 设置背景板颜色 relative_scaling = n 设置字体大小与词频的关联性 contour_width = n 设置轮廓宽度 contour_color = 'color' 设置轮廓颜色
完整代码
#导入词云库 from wordcloud import WordCloud #导入图像处理库 import PIL.Image as image #导入数据处理库 import numpy as np #导入结巴分词库 import jieba # 分词模块 def cut(text): # 选择分词模式 word_list = jieba.cut(text,cut_all= True) # 分词后在单独个体之间加上空格 result = " ".join(word_list) return result #导入文本文件,进行分词,制作词云 with open("xiaoshuo.txt") as fp: text = fp.read() # 将读取的中文文档进行分词 text = cut(text) #设置词云形状 mask = np.array(image.open("monkey.jpeg")) #自定义词云 wordcloud = WordCloud( # 遮罩层,除白色背景外,其余图层全部绘制(之前设置的宽高无效) mask=mask, #默认黑色背景,更改为白色 background_color='#FFFFFF', #按照比例扩大或缩小画布 scale=, # 若想生成中文字体,需添加中文字体路径 font_path="/usr/share/fonts/bb5828/逐浪雅宋体.otf" ).generate(text) #返回对象 image_produce = wordcloud.to_image() #保存图片 wordcloud.to_file("new_wordcloud.jpg") #显示图像 image_produce.show()
注:若想要生成图片样式的词云图,找到的图片背景必须为白色,或者使用Photoshop抠图替换成白色背景,否则生成的词云为矩形
我的词云原图:
生成的词云图:
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]