圆月山庄资源网 Design By www.vgjia.com
多线程适合于多io操作
多进程适合于耗cpu(计算)的操作
# 多进程编程 # 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程 import time from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor def fib(n): if n <= 2: return 1 return fib(n - 2) + fib(n - 1) if __name__ == '__main__': # 1. 对于耗cpu操作,多进程优于多线程 # with ThreadPoolExecutor(3) as executor: # all_task = [executor.submit(fib, num) for num in range(25, 35)] # start_time = time.time() # for future in as_completed(all_task): # data = future.result() # print(data) # print("last time :{}".format(time.time() - start_time)) # 3.905290126800537 # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常 with ProcessPoolExecutor(3) as executor: all_task = [executor.submit(fib, num) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print(data) print("last time :{}".format(time.time() - start_time)) # 2.6130592823028564
可以看到在耗cpu的应用中,多进程明显优于多线程 2.6130592823028564 < 3.905290126800537
下面模拟一个io操作
# 多进程编程 # 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程 import time from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor def io_operation(n): time.sleep(2) return n if __name__ == '__main__': # 1. 对于耗cpu操作,多进程优于多线程 # with ThreadPoolExecutor(3) as executor: # all_task = [executor.submit(io_operation, num) for num in range(25, 35)] # start_time = time.time() # for future in as_completed(all_task): # data = future.result() # print(data) # print("last time :{}".format(time.time() - start_time)) # 8.00358772277832 # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常 with ProcessPoolExecutor(3) as executor: all_task = [executor.submit(io_operation, num) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print(data) print("last time :{}".format(time.time() - start_time)) # 8.12435245513916
可以看到 8.00358772277832 < 8.12435245513916, 即是多线程比多进程更牛逼!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
Python,多线程,多进程
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月25日
2025年01月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]