在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,python计算IV值的代码如下:
def CalcIV(Xvar, Yvar): N_0 = np.sum(Yvar==0) N_1 = np.sum(Yvar==1) N_0_group = np.zeros(np.unique(Xvar).shape) N_1_group = np.zeros(np.unique(Xvar).shape) for i in range(len(np.unique(Xvar))): N_0_group[i] = Yvar[(Xvar == np.unique(Xvar)[i]) & (Yvar == 0)].count() N_1_group[i] = Yvar[(Xvar == np.unique(Xvar)[i]) & (Yvar == 1)].count() iv = np.sum((N_0_group/N_0 - N_1_group/N_1) * np.log((N_0_group/N_0)/(N_1_group/N_1))) return iv def caliv_batch(df, Kvar, Yvar): df_Xvar = df.drop([Kvar, Yvar], axis=1) ivlist = [] for col in df_Xvar.columns: iv = CalcIV(df[col], df[Yvar]) ivlist.append(iv) names = list(df_Xvar.columns) iv_df = pd.DataFrame({'Var': names, 'Iv': ivlist}, columns=['Var', 'Iv']) return iv_df
其中,df是分箱后的数据集,Kvar是主键,Yvar是y变量(0是好,1是坏)。
代码运行结果如下:
补充拓展:python基础IV(切片、迭代、生成列表)
对list进行切片
取一个list的部分元素是非常常见的操作。比如,一个list如下:
> L = ['Adam', 'Lisa', 'Bart', 'Paul']
取前3个元素,应该怎么做?
笨办法:
> [L[0], L[1], L[2]]
['Adam', 'Lisa', 'Bart']
之所以是笨办法是因为扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
> r = [] > n = 3 > for i in range(n): ... r.append(L[i]) ... > r ['Adam', 'Lisa', 'Bart']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
> L[0:3]
['Adam', 'Lisa', 'Bart']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略:
> L[:3]
['Adam', 'Lisa', 'Bart']
也可以从索引1开始,取出2个元素出来:
> L[1:3]
['Lisa', 'Bart']
只用一个 : ,表示从头到尾:
> L[:]
['Adam', 'Lisa', 'Bart', 'Paul']
因此,L[:]实际上复制出了一个新list。
切片操作还可以指定第三个参数:
> L[::2]
['Adam', 'Bart']
第三个参数表示每N个取一个,上面的 L[::2] 会每两个元素取出一个来,也就是隔一个取一个。
把list换成tuple,切片操作完全相同,只是切片的结果也变成了tuple。
倒序切片
对于list,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
> L = ['Adam', 'Lisa', 'Bart', 'Paul'] > L[-2:] ['Bart', 'Paul'] > L[:-2] ['Adam', 'Lisa'] > L[-3:-1] ['Lisa', 'Bart'] > L[-4:-1:2] ['Adam', 'Bart']
记住倒数第一个元素的索引是-1。倒序切片包含起始索引,不包含结束索引。
对字符串切片
字符串 'xxx'和 Unicode字符串 u'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
> 'ABCDEFG'[:3] 'ABC' > 'ABCDEFG'[-3:] 'EFG' > 'ABCDEFG'[::2] 'ACEG'
在很多编程语言中,针对字符串提供了很多各种截取函数,其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
什么是迭代
在Python中,如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration)。
在Python中,迭代是通过 for ... in 来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:
for (i=0; i<list.length; i++) { n = list[i]; }
可以看出,Python的for循环抽象程度要高于Java的for循环。
因为 Python 的 for循环不仅可以用在list或tuple上,还可以作用在其他任何可迭代对象上。
因此,迭代操作就是对于一个集合,无论该集合是有序还是无序,我们用 for 循环总是可以依次取出集合的每一个元素。
注意: 集合是指包含一组元素的数据结构,我们已经介绍的包括:
1. 有序集合:list,tuple,str和unicode;
2. 无序集合:set
3. 无序集合并且具有 key-value 对:dict
而迭代是一个动词,它指的是一种操作,在Python中,就是 for 循环。
迭代与按下标访问数组最大的不同是,后者是一种具体的迭代实现方式,而前者只关心迭代结果,根本不关心迭代内部是如何实现的。
索引迭代
Python中,迭代永远是取出元素本身,而非元素的索引。
对于有序集合,元素确实是有索引的。有的时候,我们确实想在 for 循环中拿到索引,怎么办?
方法是使用 enumerate() 函数:
> L = ['Adam', 'Lisa', 'Bart', 'Paul'] > for index, name in enumerate(L): ... print index, '-', name ... 0 - Adam 1 - Lisa 2 - Bart 3 - Paul
使用 enumerate() 函数,我们可以在for循环中同时绑定索引index和元素name。但是,这不是 enumerate() 的特殊语法。实际上,enumerate() 函数把:
['Adam', 'Lisa', 'Bart', 'Paul']
变成了类似:
[(0, 'Adam'), (1, 'Lisa'), (2, 'Bart'), (3, 'Paul')]
因此,迭代的每一个元素实际上是一个tuple:
for t in enumerate(L): index = t[0] name = t[1] print index, '-', name
如果我们知道每个tuple元素都包含两个元素,for循环又可以进一步简写为:
for index, name in enumerate(L):
print index, '-', name
这样不但代码更简单,而且还少了两条赋值语句。
可见,索引迭代也不是真的按索引访问,而是由 enumerate() 函数自动把每个元素变成 (index, element) 这样的tuple,再迭代,就同时获得了索引和元素本身。
迭代dict的value
我们已经了解了dict对象本身就是可迭代对象,用 for 循环直接迭代 dict,可以每次拿到dict的一个key。
如果我们希望迭代 dict 对象的value,应该怎么做?
dict 对象有一个 values() 方法,这个方法把dict转换成一个包含所有value的list,这样,我们迭代的就是 dict的每一个 value:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } print d.values() # [85, 95, 59] for v in d.values(): print v # 85 # 95 # 59
如果仔细阅读Python的文档,还可以发现,dict除了values()方法外,还有一个 itervalues() 方法,用 itervalues() 方法替代 values() 方法,迭代效果完全一样:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } print d.itervalues() # <dictionary-valueiterator object at 0x106adbb50> for v in d.itervalues(): print v # 85 # 95 # 59
那这两个方法有何不同之处呢?
1. values() 方法实际上把一个 dict 转换成了包含 value 的list。
2. 但是 itervalues() 方法不会转换,它会在迭代过程中依次从 dict 中取出 value,所以 itervalues() 方法比 values() 方法节省了生成 list 所需的内存。
3. 打印 itervalues() 发现它返回一个 <dictionary-valueiterator> 对象,这说明在Python中,for 循环可作用的迭代对象远不止 list,tuple,str,unicode,dict等,任何可迭代对象都可以作用于for循环,而内部如何迭代我们通常并不用关心。
如果一个对象说自己可迭代,那我们就直接用 for 循环去迭代它,可见,迭代是一种抽象的数据操作,它不对迭代对象内部的数据有任何要求。
迭代dict的key和value
我们了解了如何迭代 dict 的key和value,那么,在一个 for 循环中,能否同时迭代 key和value?答案是肯定的。
首先,我们看看 dict 对象的 items() 方法返回的值:
> d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } > print d.items() [('Lisa', 85), ('Adam', 95), ('Bart', 59)]
可以看到,items() 方法把dict对象转换成了包含tuple的list,我们对这个list进行迭代,可以同时获得key和value:
> for key, value in d.items(): ... print key, ':', value ... Lisa : 85 Adam : 95 Bart : 59
和 values() 有一个 itervalues() 类似, items() 也有一个对应的 iteritems(),iteritems() 不把dict转换成list,而是在迭代过程中不断给出 tuple,所以, iteritems() 不占用额外的内存。
生成列表
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],我们可以用range(1, 11):
> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
> L = [] > for x in range(1, 11): ... L.append(x * x) ... > L [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
> [x * x for x in range(1, 11)] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
这种写法就是Python特有的列表生成式。利用列表生成式,可以以非常简洁的代码生成 list。
写列表生成式时,把要生成的元素 x * x 放到前面,后面跟 for 循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
复杂表达式
使用for循环的迭代不仅可以迭代普通的list,还可以迭代dict。
假设有如下的dict:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
完全可以通过一个复杂的列表生成式把它变成一个 HTML 表格:
tds = ['<tr><td>%s</td><td>%s</td></tr>' % (name, score) for name, score in d.iteritems()] print '<table>' print '<tr><th>Name</th><th>Score</th><tr>' print '\n'.join(tds) print '</table>'
注:字符串可以通过 % 进行格式化,用指定的参数替代 %s。字符串的join()方法可以把一个 list 拼接成一个字符串。
条件过滤
列表生成式的 for 循环后面还可以加上 if 判断。例如:
> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
如果我们只想要偶数的平方,不改动 range()的情况下,可以加上 if 来筛选:
> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
有了 if 条件,只有 if 判断为 True 的时候,才把循环的当前元素添加到列表中。
多层表达式
for循环可以嵌套,因此,在列表生成式中,也可以用多层 for 循环来生成列表。
对于字符串 'ABC' 和 '123',可以使用两层循环,生成全排列:
> [m + n for m in 'ABC' for n in '123']
['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']
翻译成循环代码就像下面这样:
L = [] for m in 'ABC': for n in '123': L.append(m + n)
以上这篇Python计算IV值的示例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Python,计算IV值
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]