1、流程
大体流程如下,无论图像、声音、ADC数据都是如下流程:
(1)将原信号进行FFT;
(2)将进行FFT得到的数据去掉需要滤波的频率;
(3)进行FFT逆变换得到信号数据;
2、算法仿真
2.1 生成数据:
#采样点选择1400个,因为设置的信号频率分量最高为600Hz,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400Hz(即一秒内有1400个采样点) x=np.linspace(0,1,1400) #设置需要采样的信号,频率分量有180,390和600 y=2*np.sin(2*np.pi*180*x) + 3*np.sin(2*np.pi*390*x)+4*np.sin(2*np.pi*600*x)
2.2 对生成的数据进行FFT变换
yy=fft(y) #快速傅里叶变换 yf=abs(fft(y)) # 取模 yf1=abs(fft(y))/((len(x)/2)) #归一化处理 yf2 = yf1[range(int(len(x)/2))] #由于对称性,只取一半区间
2.3显示转换结果:
显示原始FFT模值:
#混合波的FFT(双边频率范围) plt.figure(2) plt.plot(xf,yf,'r') #显示原始信号的FFT模值 plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表
显示原始FFT归一化后的模值:
#混合波的FFT(归一化) plt.figure(3) plt.plot(xf1,yf1,'g') plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r')
由于对称,只取一半区间进行显示
plt.figure(4) plt.plot(xf2,yf2,'b') plt.title('FFT of Mixed wave)',fontsize=10,color='#F08080')
3、利用FFT进行滤波
例如将频率为600HZ的噪声滤掉,这里直接将该频段的数据置零:
yy=fft(y) #快速傅里叶变换 yreal = yy.real # 获取实数部分 yimag = yy.imag # 获取虚数部分 test_y =yy for i in range(len(yy)): if i <=900 and i>=500: test_y[i]=0
对置零后的数据进行逆变换:
test = np.fft.ifft(test_y) #对变换后的结果应用ifft函数,应该可以近似地还原初始信号。
对还原的数据进行FFT变换的结果:
滤波后的数据和原数据相对比:
蓝色的为原数据,橙色的为滤波后的数据
假设将400Hz和600Hz的信号都滤掉得到的信号图像如下:
4、对随机噪声进行滤波
源码:
noise_size = 1400 noise_array = np.random.normal(0, 2, noise_size) adc_value=[] for i in range(noise_size): adc_value.append(0) y= np.array(adc_value) + noise_array yy=fft(y) #快速傅里叶变换 yf=abs(fft(y)) # 取模 yf1=abs(fft(y))/((len(y)/2)) #归一化处理 yf2 = yf1[range(int(len(y)/2))] #由于对称性,只取一半区间 #混合波的FFT(双边频率范围) xf = np.arange(len(y)) plt.figure(1) plt.plot(xf,yf,'r') #显示原始信号的FFT模值 plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表 yy=fft(y) #快速傅里叶变换 yreal = yy.real # 获取实数部分 yimag = yy.imag # 获取虚数部分 test_y =yy for i in range(len(yy)): if i <=1200 and i>=200: test_y[i]=0 test = np.fft.ifft(test_y) #对变换后的结果应用ifft函数,应该可以近似地还原初始信号。 y=test yy=fft(y) #快速傅里叶变换 yf=abs(fft(y)) # 取模 yf1=abs(fft(y))/((len(y)/2)) #归一化处理 yf2 = yf1[range(int(len(y)/2))] #由于对称性,只取一半区间 #混合波的FFT(双边频率范围) xf = np.arange(len(y)) plt.figure(2) plt.plot(xf,yf,'r') #显示原始信号的FFT模值 plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表
运行结果:
原数据频谱图:
滤波后的频谱图:
滤波后(蓝色线)与原数据(红色线)对比:
以上这篇Python利用FFT进行简单滤波的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Python,FFT,滤波
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]