这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变)
我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元。
如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的)。
显然,我宁愿预估多了,也不想预估少了。
所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样。
(yhat沿用吴恩达课堂中的叫法)
import tensorflow as tf from numpy.random import RandomState batch_size = 8 # 两个输入节点 x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") # 回归问题一般只有一个输出节点 y_ = tf.placeholder(tf.float32, shape=(None, 1), name="y-input") # 定义了一个单层的神经网络前向传播的过程,这里就是简单加权和 w1 = tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1)) y = tf.matmul(x, w1) # 定义预测多了和预测少了的成本 loss_less = 10 loss_more = 1 #在windows下,下面用这个where替代,因为调用tf.select会报错 loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_)*loss_more, (y_-y)*loss_less)) train_step = tf.train.AdamOptimizer(0.001).minimize(loss) #通过随机数生成一个模拟数据集 rdm = RandomState(1) dataset_size = 128 X = rdm.rand(dataset_size, 2) """ 设置回归的正确值为两个输入的和加上一个随机量,之所以要加上一个随机量是 为了加入不可预测的噪音,否则不同损失函数的意义就不大了,因为不同损失函数 都会在能完全预测正确的时候最低。一般来说,噪音为一个均值为0的小量,所以 这里的噪音设置为-0.05, 0.05的随机数。 """ Y = [[x1 + x2 + rdm.rand()/10.0-0.05] for (x1, x2) in X] with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) steps = 5000 for i in range(steps): start = (i * batch_size) % dataset_size end = min(start + batch_size, dataset_size) sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]}) print(sess.run(w1)) [[ 1.01934695] [ 1.04280889]
最终结果如上面所示。
因为我们当初生成训练数据的时候,y是x1 + x2,所以回归结果应该是1,1才对。
但是,由于我们加了自己定义的损失函数,所以,倾向于预估多一点。
如果,我们将loss_less和loss_more对调,我们看一下结果:
[[ 0.95525807]
[ 0.9813394 ]]
通过这个例子,我们可以看出,对于相同的神经网络,不同的损失函数会对训练出来的模型产生重要的影响。
引用:以上实例为《Tensorflow实战 Google深度学习框架》中提供。
总结
以上所述是小编给大家介绍的tensorflow 自定义损失函数示例,希望对大家有所帮助!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]