前言:因为研究工作的需要,要更改激活函数以适应自己的网络模型,但是单纯的函数替换会训练导致不能收敛。这里还有些不清楚为什么,希望有人可以给出解释。查了一些博客,发现了解决之道。下面将解决过程贴出来供大家指正。
1.背景
之前听某位老师提到说tensorflow可以在不给梯度函数的基础上做梯度下降,所以尝试了替换。我的例子时将ReLU改为平方。即原来的激活函数是 现在换成
单纯替换激活函数并不能较好的效果,在我的实验中,迭代到一定批次,准确率就会下降,最终降为10%左右保持稳定。而事实上,这中间最好的训练精度为92%。资源有限,问了对神经网络颇有研究的同学,说是激活函数的问题,然而某篇很厉害的论文中提到其精度在99%,着实有意思。之后开始研究自己些梯度函数以完成训练。
2.大概流程
首先要确定梯度函数,之后将其处理为tf能接受的类型。
2.1定义自己的激活函数
def square(x): return pow(x, 2)
2.2 定义该激活函数的一次梯度函数
def square_grad(x): return 2 * x
2.3 让numpy数组每一个元素都能应用该函数(全局)
square_np = np.vectorize(square) square_grad_np = np.vectorize(square_grad)
2.4 转为tf可用的32位float型,numpy默认是64位(全局)
square_np_32 = lambda x: square_np(x).astype(np.float32) square_grad_np_32 = lambda x: square_grad_np(x).astype(np.float32)
2.5 定义tf版的梯度函数
def square_grad_tf(x, name=None): with ops.name_scope(name, "square_grad_tf", [x]) as name: y = tf.py_func(square_grad_np_32, [x], [tf.float32], name=name, stateful=False) return y[0]
2.6 定义函数
def my_py_func(func, inp, Tout, stateful=False, name=None, my_grad_func=None): # need to generate a unique name to avoid duplicates: random_name = "PyFuncGrad" + str(np.random.randint(0, 1E+8)) tf.RegisterGradient(random_name)(my_grad_func) g = tf.get_default_graph() with g.gradient_override_map({"PyFunc": random_name, "PyFuncStateless": random_name}): return tf.py_func(func, inp, Tout, stateful=stateful, name=name)
2.7 定义梯度,该函数依靠上一个函数my_py_func计算并传播
def _square_grad(op, pred_grad): x = op.inputs[0] cur_grad = square_grad(x) next_grad = pred_grad * cur_grad return next_grad
2.8 定义tf版的square函数
def square_tf(x, name=None): with ops.name_scope(name, "square_tf", [x]) as name: y = my_py_func(square_np_32, [x], [tf.float32], stateful=False, name=name, my_grad_func=_square_grad) return y[0]
3.使用
跟用其他激活函数一样,直接用就行了。input_data:输入数据。
h = square_tf(input_data)
over. 学艺不精,多多指教!
以上这篇tensorflow自定义激活函数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]