直接看代码例子,有详细注释!!
import tensorflow as tf import numpy as np d = np.arange(0,60).reshape([6, 10]) # 将array转化为tensor data = tf.data.Dataset.from_tensor_slices(d) # 从data数据集中按顺序抽取buffer_size个样本放在buffer中,然后打乱buffer中的样本 # buffer中样本个数不足buffer_size,继续从data数据集中安顺序填充至buffer_size, # 此时会再次打乱 data = data.shuffle(buffer_size=3) # 每次从buffer中抽取4个样本 data = data.batch(4) # 将data数据集重复,其实就是2个epoch数据集 data = data.repeat(2) # 构造获取数据的迭代器 iters = data.make_one_shot_iterator() # 每次从迭代器中获取一批数据 batch = iters.get_next() sess = tf.Session() sess.run(batch) # 数据集完成遍历完之后,继续抽取的话会报错:OutOfRangeError
In [21]: d Out[21]: array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]]) In [22]: sess.run(batch) Out[22]: array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]) In [23]: sess.run(batch) Out[23]: array([[40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
从输出结果可以看出:
shuffle是按顺序将数据放入buffer里面的;
当repeat函数在shuffle之后的话,是将一个epoch的数据集抽取完毕,再进行下一个epoch的。
那么,当repeat函数在shuffle之前会怎么样呢?如下:
data = data.repeat(2) data = data.shuffle(buffer_size=3) data = data.batch(4)
In [25]: sess.run(batch) Out[25]: array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]]) In [26]: sess.run(batch) Out[26]: array([[50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]]) In [27]: sess.run(batch) Out[27]: array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
可以看出,其实它就是先将数据集复制一遍,然后把两个epoch当成同一个新的数据集,一直shuffle和batch下去。
以上这篇TensorFlow dataset.shuffle、batch、repeat的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]