pytorch 在torchvision包里面有很多的的打包好的数据集,例如minist,Imagenet-12,CIFAR10 和CIFAR100。在torchvision的dataset包里面,用的时候直接调用就行了。具体的调用格式可以去看文档(目前好像只有英文的)。网上也有很多源代码。
不过,当我们想利用自己制作的数据集来训练网络模型时,就要有自己的方法了。pytorch在torchvision.dataset包里面封装过一个函数ImageFolder()。这个函数功能很强大,只要你直接将数据集路径保存为例如“train/1/1.jpg ,rain/1/2.jpg …… ”就可以根据根目录“./train”将数据集装载了。
dataset.ImageFolder(root="datapath", transfroms.ToTensor())
但是后来我发现一个问题,就是这个函数加载出来的图像矩阵都是三通道的,并且没有什么参数调用可以让其变为单通道。如果我们要用到单通道数据集(灰度图)的话,比如自己加载Lenet-5模型的数据集,就只能自己写numpy数组再转为pytorch的Tensor()张量了。
接下来是我做的过程:
首先,还是要用到opencv,用灰度图打开一张图片,省事。
#读取图片 这里是灰度图 for item in all_path: img = cv2.imread(item[1],0) img = cv2.resize(img,(28,28)) arr = np.asarray(img,dtype="float32") data_x[i ,:,:,:] = arr i+=1 data_y.append(int(item[0])) data_x = data_x / 255 data_y = np.asarray(data_y)
其次,pytorch有自己的numpy转Tensor函数,直接转就行了。
data_x = torch.from_numpy(data_x) data_y = torch.from_numpy(data_y)
下一步利用torch.util和torchvision里面的dataLoader函数,就能直接得到和torchvision.dataset里面封装好的包相同的数据集样本了
dataset = dataf.TensorDataset(data_x,data_y) loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True)
最后就是自己建网络设计参数训练了,这部分和文档以及github中的差不多,就不赘述了。
下面是整个程序的源代码,我利用的还是上次的车标识别的数据集,一共分四类,用的是2层卷积核两层全连接。
源代码:
# coding=utf-8 import os import cv2 import numpy as np import random import torch import torch.nn as nn import torch.utils.data as dataf from torch.autograd import Variable import torch.nn.functional as F import torch.optim as optim #训练参数 cuda = False train_epoch = 20 train_lr = 0.01 train_momentum = 0.5 batchsize = 5 #测试训练集路径 test_path = "/home/test/" train_path = "/home/train/" #路径数据 all_path =[] def load_data(data_path): signal = os.listdir(data_path) for fsingal in signal: filepath = data_path+fsingal filename = os.listdir(filepath) for fname in filename: ffpath = filepath+"/"+fname path = [fsingal,ffpath] all_path.append(path) #设立数据集多大 count = len(all_path) data_x = np.empty((count,1,28,28),dtype="float32") data_y = [] #打乱顺序 random.shuffle(all_path) i=0; #读取图片 这里是灰度图 最后结果是i*i*i*i #分别表示:batch大小 , 通道数, 像素矩阵 for item in all_path: img = cv2.imread(item[1],0) img = cv2.resize(img,(28,28)) arr = np.asarray(img,dtype="float32") data_x[i ,:,:,:] = arr i+=1 data_y.append(int(item[0])) data_x = data_x / 255 data_y = np.asarray(data_y) # lener = len(all_path) data_x = torch.from_numpy(data_x) data_y = torch.from_numpy(data_y) dataset = dataf.TensorDataset(data_x,data_y) loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True) return loader # print data_y train_load = load_data(train_path) test_load = load_data(test_path) class L5_NET(nn.Module): def __init__(self): super(L5_NET ,self).__init__(); #第一层输入1,20个卷积核 每个5*5 self.conv1 = nn.Conv2d(1 , 20 , kernel_size=5) #第二层输入20,30个卷积核 每个5*5 self.conv2 = nn.Conv2d(20 , 30 , kernel_size=5) #drop函数 self.conv2_drop = nn.Dropout2d() #全链接层1,展开30*4*4,连接层50个神经元 self.fc1 = nn.Linear(30*4*4,50) #全链接层1,50-4 ,4为最后的输出分类 self.fc2 = nn.Linear(50,4) #前向传播 def forward(self,x): #池化层1 对于第一层卷积池化,池化核2*2 x = F.relu(F.max_pool2d( self.conv1(x) ,2 ) ) #池化层2 对于第二层卷积池化,池化核2*2 x = F.relu(F.max_pool2d( self.conv2_drop( self.conv2(x) ) , 2 ) ) #平铺轴30*4*4个神经元 x = x.view(-1 , 30*4*4) #全链接1 x = F.relu( self.fc1(x) ) #dropout链接 x = F.dropout(x , training= self.training) #全链接w x = self.fc2(x) #softmax链接返回结果 return F.log_softmax(x) model = L5_NET() if cuda : model.cuda() optimizer = optim.SGD(model.parameters() , lr =train_lr , momentum = train_momentum ) #预测函数 def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_load): if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) #求导 optimizer.zero_grad() #训练模型,输出结果 output = model(data) #在数据集上预测loss loss = F.nll_loss(output, target) #反向传播调整参数pytorch直接可以用loss loss.backward() #SGD刷新进步 optimizer.step() #实时输出 if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_load.dataset), 100. * batch_idx / len(train_load), loss.data[0])) # #测试函数 def test(epoch): model.eval() test_loss = 0 correct = 0 for data, target in test_load: if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) #在测试集上预测 output = model(data) #计算在测试集上的loss test_loss += F.nll_loss(output, target).data[0] #获得预测的结果 pred = output.data.max(1)[1] # get the index of the max log-probability #如果正确,correct+1 correct += pred.eq(target.data).cpu().sum() #loss计算 test_loss = test_loss test_loss /= len(test_load) #输出结果 print('\nThe {} epoch result : Average loss: {:.6f}, Accuracy: {}/{} ({:.2f}%)\n'.format( epoch,test_loss, correct, len(test_load.dataset), 100. * correct / len(test_load.dataset))) for epoch in range(1, train_epoch+ 1): train(epoch) test(epoch)
最后的训练结果和在keras下差不多,不过我训练的时候好像把训练集和测试集弄反了,数目好像测试集比训练集还多,有点尴尬,不过无伤大雅。结果图如下:
以上这篇Pytorch自己加载单通道图片用作数据集训练的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]