原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的“fake”数据,目的是网络生成的fake数据可以“骗过”判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据。总的来说是:判别器区分真实数据和fake数据的能力越强越好;生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能交替训练网络。
需要搭建生成器网络和判别器网络,训练的时候交替训练。
首先训练判别器的参数,固定生成器的参数,让判别器判断生成器生成的数据,让其和0接近,让判别器判断真实数据,让其和1接近;
接着训练生成器的参数,固定判别器的参数,让生成器生成的数据进入判别器,让判断结果和1接近。生成器生成数据需要给定随机初始值
线性版:
import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch import optim import torch.nn as nn import matplotlib.pyplot as plt import numpy as np import matplotlib.gridspec as gridspec def showimg(images,count): images=images.detach().numpy()[0:16,:] images=255*(0.5*images+0.5) images = images.astype(np.uint8) grid_length=int(np.ceil(np.sqrt(images.shape[0]))) plt.figure(figsize=(4,4)) width = int(np.sqrt((images.shape[1]))) gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0) # gs.update(wspace=0, hspace=0) print('starting...') for i, img in enumerate(images): ax = plt.subplot(gs[i]) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape([width,width]),cmap = plt.cm.gray) plt.axis('off') plt.tight_layout() print('showing...') plt.tight_layout() plt.savefig('./GAN_Image/%d.png'%count, bbox_inches='tight') def loadMNIST(batch_size): #MNIST图片的大小是28*28 trans_img=transforms.Compose([transforms.ToTensor()]) trainset=MNIST('./data',train=True,transform=trans_img,download=True) testset=MNIST('./data',train=False,transform=trans_img,download=True) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10) testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10) return trainset,testset,trainloader,testloader class discriminator(nn.Module): def __init__(self): super(discriminator,self).__init__() self.dis=nn.Sequential( nn.Linear(784,300), nn.LeakyReLU(0.2), nn.Linear(300,150), nn.LeakyReLU(0.2), nn.Linear(150,1), nn.Sigmoid() ) def forward(self, x): x=self.dis(x) return x class generator(nn.Module): def __init__(self,input_size): super(generator,self).__init__() self.gen=nn.Sequential( nn.Linear(input_size,150), nn.ReLU(True), nn.Linear(150,300), nn.ReLU(True), nn.Linear(300,784), nn.Tanh() ) def forward(self, x): x=self.gen(x) return x if __name__=="__main__": criterion=nn.BCELoss() num_img=100 z_dimension=100 D=discriminator() G=generator(z_dimension) trainset, testset, trainloader, testloader = loadMNIST(num_img) # data d_optimizer=optim.Adam(D.parameters(),lr=0.0003) g_optimizer=optim.Adam(G.parameters(),lr=0.0003) ''' 交替训练的方式训练网络 先训练判别器网络D再训练生成器网络G 不同网络的训练次数是超参数 也可以两个网络训练相同的次数 这样就可以不用分别训练两个网络 ''' count=0 #鉴别器D的训练,固定G的参数 epoch = 100 gepoch = 1 for i in range(epoch): for (img, label) in trainloader: # num_img=img.size()[0] real_img=img.view(num_img,-1)#展开为28*28=784 real_label=torch.ones(num_img)#真实label为1 fake_label=torch.zeros(num_img)#假的label为0 #compute loss of real_img real_out=D(real_img) #真实图片送入判别器D输出0~1 d_loss_real=criterion(real_out,real_label)#得到loss real_scores=real_out#真实图片放入判别器输出越接近1越好 #compute loss of fake_img z=torch.randn(num_img,z_dimension)#随机生成向量 fake_img=G(z)#将向量放入生成网络G生成一张图片 fake_out=D(fake_img)#判别器判断假的图片 d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss fake_scores=fake_out#假的图片放入判别器输出越接近0越好 #D bp and optimize d_loss=d_loss_real+d_loss_fake d_optimizer.zero_grad() #判别器D的梯度归零 d_loss.backward() #反向传播 d_optimizer.step() #更新判别器D参数 #生成器G的训练compute loss of fake_img for j in range(gepoch): fake_label = torch.ones(num_img) # 真实label为1 z = torch.randn(num_img, z_dimension) # 随机生成向量 fake_img = G(z) # 将向量放入生成网络G生成一张图片 output = D(fake_img) # 经过判别器得到结果 g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss #bp and optimize g_optimizer.zero_grad() #生成器G的梯度归零 g_loss.backward() #反向传播 g_optimizer.step()#更新生成器G参数 print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} ' 'D real: {:.6f}, D fake: {:.6f}'.format( i, epoch, d_loss.data[0], g_loss.data[0], real_scores.data.mean(), fake_scores.data.mean())) showimg(fake_img,count) # plt.show() count += 1
这里的图分别是 epoch为0、50、100、150、190的运行结果,可以看到图片中的数字并不单一
卷积版 Deep Convolutional Generative Adversarial Networks:
import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch import optim import torch.nn as nn import matplotlib.pyplot as plt import numpy as np from torch.autograd import Variable import matplotlib.gridspec as gridspec import os def showimg(images,count): images=images.to('cpu') images=images.detach().numpy() images=images[[6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]] images=255*(0.5*images+0.5) images = images.astype(np.uint8) grid_length=int(np.ceil(np.sqrt(images.shape[0]))) plt.figure(figsize=(4,4)) width = images.shape[2] gs = gridspec.GridSpec(grid_length,grid_length,wspace=0,hspace=0) print(images.shape) for i, img in enumerate(images): ax = plt.subplot(gs[i]) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape(width,width),cmap = plt.cm.gray) plt.axis('off') plt.tight_layout() # print('showing...') plt.tight_layout() # plt.savefig('./GAN_Imaget/%d.png'%count, bbox_inches='tight') def loadMNIST(batch_size): #MNIST图片的大小是28*28 trans_img=transforms.Compose([transforms.ToTensor()]) trainset=MNIST('./data',train=True,transform=trans_img,download=True) testset=MNIST('./data',train=False,transform=trans_img,download=True) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") trainloader=DataLoader(trainset,batch_size=batch_size,shuffle=True,num_workers=10) testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=10) return trainset,testset,trainloader,testloader class discriminator(nn.Module): def __init__(self): super(discriminator,self).__init__() self.dis=nn.Sequential( nn.Conv2d(1,32,5,stride=1,padding=2), nn.LeakyReLU(0.2,True), nn.MaxPool2d((2,2)), nn.Conv2d(32,64,5,stride=1,padding=2), nn.LeakyReLU(0.2,True), nn.MaxPool2d((2,2)) ) self.fc=nn.Sequential( nn.Linear(7 * 7 * 64, 1024), nn.LeakyReLU(0.2, True), nn.Linear(1024, 1), nn.Sigmoid() ) def forward(self, x): x=self.dis(x) x=x.view(x.size(0),-1) x=self.fc(x) return x class generator(nn.Module): def __init__(self,input_size,num_feature): super(generator,self).__init__() self.fc=nn.Linear(input_size,num_feature) #1*56*56 self.br=nn.Sequential( nn.BatchNorm2d(1), nn.ReLU(True) ) self.gen=nn.Sequential( nn.Conv2d(1,50,3,stride=1,padding=1), nn.BatchNorm2d(50), nn.ReLU(True), nn.Conv2d(50,25,3,stride=1,padding=1), nn.BatchNorm2d(25), nn.ReLU(True), nn.Conv2d(25,1,2,stride=2), nn.Tanh() ) def forward(self, x): x=self.fc(x) x=x.view(x.size(0),1,56,56) x=self.br(x) x=self.gen(x) return x if __name__=="__main__": criterion=nn.BCELoss() num_img=100 z_dimension=100 D=discriminator() G=generator(z_dimension,3136) #1*56*56 trainset, testset, trainloader, testloader = loadMNIST(num_img) # data D=D.cuda() G=G.cuda() d_optimizer=optim.Adam(D.parameters(),lr=0.0003) g_optimizer=optim.Adam(G.parameters(),lr=0.0003) ''' 交替训练的方式训练网络 先训练判别器网络D再训练生成器网络G 不同网络的训练次数是超参数 也可以两个网络训练相同的次数, 这样就可以不用分别训练两个网络 ''' count=0 #鉴别器D的训练,固定G的参数 epoch = 100 gepoch = 1 for i in range(epoch): for (img, label) in trainloader: # num_img=img.size()[0] img=Variable(img).cuda() real_label=Variable(torch.ones(num_img)).cuda()#真实label为1 fake_label=Variable(torch.zeros(num_img)).cuda()#假的label为0 #compute loss of real_img real_out=D(img) #真实图片送入判别器D输出0~1 d_loss_real=criterion(real_out,real_label)#得到loss real_scores=real_out#真实图片放入判别器输出越接近1越好 #compute loss of fake_img z=Variable(torch.randn(num_img,z_dimension)).cuda()#随机生成向量 fake_img=G(z)#将向量放入生成网络G生成一张图片 fake_out=D(fake_img)#判别器判断假的图片 d_loss_fake=criterion(fake_out,fake_label)#假的图片的loss fake_scores=fake_out#假的图片放入判别器输出越接近0越好 #D bp and optimize d_loss=d_loss_real+d_loss_fake d_optimizer.zero_grad() #判别器D的梯度归零 d_loss.backward() #反向传播 d_optimizer.step() #更新判别器D参数 #生成器G的训练compute loss of fake_img for j in range(gepoch): fake_label = Variable(torch.ones(num_img)).cuda() # 真实label为1 z = Variable(torch.randn(num_img, z_dimension)).cuda() # 随机生成向量 fake_img = G(z) # 将向量放入生成网络G生成一张图片 output = D(fake_img) # 经过判别器得到结果 g_loss = criterion(output, fake_label)#得到假的图片与真实标签的loss #bp and optimize g_optimizer.zero_grad() #生成器G的梯度归零 g_loss.backward() #反向传播 g_optimizer.step()#更新生成器G参数 # if ((i+1)%1000==0): # print("[%d/%d] GLoss: %.5f" % (i + 1, gepoch, g_loss.data[0])) print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} ' 'D real: {:.6f}, D fake: {:.6f}'.format( i, epoch, d_loss.data[0], g_loss.data[0], real_scores.data.mean(), fake_scores.data.mean())) showimg(fake_img,count) plt.show() count += 1
这里的gepoch设置为1,运行39次的结果是:
gepoch设置为2,运行0、25、50、75、100次的结果是:
gepoch设置为3,运行25、50、75次的结果是:
gepoch设置为4,运行0、10、20、30、35次的结果是:
gepoch设置为5,运行0、10、20、25、29次的结果是:
gepoch设置为3,z_dimension设置为190,epoch运行0、10、15、20、25、35的结果是:
可以看到生成的数字基本没有太多的规律,可能最终都是同个数字,不能生成指定的数字,CGAN就很好的解决这个问题,可以生成指定的数字 Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式
以上这篇Pytorch使用MNIST数据集实现基础GAN和DCGAN详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]