torch.autograd.backward(variables, grad_variables=None, retain_graph=None, create_graph=False)
给定图的叶子节点variables, 计算图中变量的梯度和。 计算图可以通过链式法则求导。如果variables中的任何一个variable是 非标量(non-scalar)的,且requires_grad=True。那么此函数需要指定grad_variables,它的长度应该和variables的长度匹配,里面保存了相关variable的梯度(对于不需要gradient tensor的variable,None是可取的)。
此函数累积leaf variables计算的梯度。你可能需要在调用此函数之前将leaf variable的梯度置零。
参数:
variables(变量的序列) - 被求微分的叶子节点,即 ys 。
grad_variables((张量,变量)的序列或无) - 对应variable的梯度。仅当variable不是标量且需要求梯度的时候使用。
retain_graph(bool,可选) - 如果为False,则用于释放计算grad的图。请注意,在几乎所有情况下,没有必要将此选项设置为True,通常可以以更有效的方式解决。默认值为create_graph的值。
create_graph(bool,可选) - 如果为True,则将构造派生图,允许计算更高阶的派生产品。默认为False。
我这里举一个官方的例子
import torch from torch.autograd import Variable x = Variable(torch.ones(2, 2), requires_grad=True) y = x + 2 z = y * y * 3 out = z.mean() out.backward()#这里是默认情况,相当于out.backward(torch.Tensor([1.0])) print(x.grad)
输出结果是
Variable containing: 4.5000 4.5000 4.5000 4.5000 [torch.FloatTensor of size 2x2]
接着我们继续
x = torch.randn(3) x = Variable(x, requires_grad=True) y = x * 2 while y.data.norm() < 1000: y = y * 2 gradients = torch.FloatTensor([0.1, 1.0, 0.0001]) y.backward(gradients) print(x.grad)
输出结果是
Variable containing: 204.8000 2048.0000 0.2048 [torch.FloatTensor of size 3]
这里这个gradients为什么要是[0.1, 1.0, 0.0001]?
如果输出的多个loss权重不同的话,例如有三个loss,一个是x loss,一个是y loss,一个是class loss。那么很明显的不可能所有loss对结果影响程度都一样,他们之间应该有一个比例。那么比例这里指的就是[0.1, 1.0, 0.0001],这个问题中的loss对应的就是上面说的y,那么这里的输出就很好理解了dy/dx=0.1*dy1/dx+1.0*dy2/dx+0.0001*dy3/dx。
如有问题,希望大家指正,谢谢_!
以上这篇解决torch.autograd.backward中的参数问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]