圆月山庄资源网 Design By www.vgjia.com

我就废话不多说了,直接上代码吧!

#coding=utf-8
import cv2
import numpy as np
import os
# 程序实现功能:
# 根据patch在高分辨率图像上的索引值,crop出对应区域的图像
# 并验证程序的正确性
'''
对于当前输入的3328*3328的高分辨率特征图,首先resize到640*640
然后根据当前的patch文件名(包含了patch在高分辨率图像上的行索引和列索引)
这个索引值是将高分辨率图像划分成多个没有overlap的256*256的图像块之后的行索引和列索引
行索引range(1,11),列索引range(0,12)
3328=13*256
'''

index='IDRiD_03_3_12.jpg'
raw_img_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\raw_image\\train'
patches_path='F:\\2\\eye_seg_con\\eye_seg\\joint_data\\patches\\train'
true_patches=cv2.imread(os.path.join(patches_path,index))[:,:,::-1]

print(os.path.join(raw_img_path,index.split('_')[0]+index.split('_')[1]+'.jpg'))

hr_img=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))[:,:,::-1]
hr_img=cv2.resize(hr_img,(640,640))# hr_img RGB

'''
640/13=49.23076923076923 记作unit
将640*640的区域平均划分成13*13份,每一份的像素点大小是unit*unit
然后将对应位置(取整)的图像块抠出来,resize成256*256大小
'''
unit=640/13
patch_row_num = int(index[:-4].split('_')[2])
patch_col_num = int(index[:-4].split('_')[3])

row_start=round(patch_row_num*unit)
row_end=round((patch_row_num+1)*unit)
col_start=round(patch_col_num*unit)
col_end=round((patch_col_num+1)*unit)

my_patch=hr_img[row_start:row_end,col_start:col_end,:]
my_patch=cv2.resize(my_patch,(256,256))
my_patch=np.array(my_patch,dtype=np.uint8)

cv2.imshow('true_patches',true_patches[:,:,::-1])
cv2.waitKey(0)

cv2.imshow('my_patch',my_patch[:,:,::-1])
cv2.waitKey(0)

# # hr_img RGB
#
# # cv2.imshow('1',hr_img[:,:,::-1])
# # cv2.waitKey(0)
#
# hr_img2=cv2.imread(os.path.join(raw_img_path,index.split('_')[0]+'_'+index.split('_')[1]+'.jpg'))
# hr_img2=cv2.resize(hr_img2,(640,640))[:,:,::-1]# hr_img2 RGB
# # cv2.imshow('2',hr_img2[:,:,::-1])
# # cv2.waitKey(0)
#
# print(np.sum(hr_img2-hr_img))# 0

# 结论:
# 对于cv2.resize函数而言,无论是先进行BGR的通道转换,再resize,还是先进行resize,再进行BGR通道转换
# 所得到的图像是相同的,即resize和通道维度的变换可交换顺序
# 实际上resize只发生在spatial dimension,而通道变换发生在channels dimension,所以空间维度上的插值变换
# 是在每个通道维度上独立进行的。
# 另外,对于计算机而言,所读取到的彩色图像就是H*W*3的矩阵而已,它本身是没有办法区分究竟是BGR格式还是RGB格式的

以上这篇python 实现从高分辨图像上抠取图像块就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,高分辨,抠取,图像块

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。