圆月山庄资源网 Design By www.vgjia.com

前言

之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛。可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试。

之后的代码都导入了:

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2

测试

使用PIL和cv2读取图片时会有细微的区别,通过下面的代码可以发现两者读取图片是有区别的,也就是使用PIL读取出来的图片转为numpy格式和直接使用cv读取的图片在像素点上并不是完全一致:

In[11]: image = cv2.imread('datasets/0_target.jpg')
In[18]: image_pil = Image.open('datasets/0_target.jpg').convert('RGB')
In[19]: image_pil = np.array(image_pil)
In[20]: image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
In[21]: image_cv == image_pil
Out[21]: 
array([[[ True, True, False],
    [ True, False, False],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, True, False],
    ...,
    [ True, True, False],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, False]],

    ...,

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [False, False, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [ True, True, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, False, False],
    [ True, False, False],
    [ True, False, False],
    ...,
    [ True, True, True],
    [False, False, False],
    [ True, False, False]]])
In[26]: image_cv.shape
Out[26]: (682, 700, 3)
In[27]: image_pil.shape
Out[27]: (682, 700, 3)
In[28]: image_pil - image_cv
Out[28]: 
array([[[ 0,  0,  1],
    [ 0, 255,  3],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  0,  2],
    ...,
    [ 0,  0, 254],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0, 254]],

    ...,

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [254,  1,  0],
    [ 0,  0,  0],
    [ 1, 255,  3]],

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 2, 254,  4]],

    [[ 0,  1, 253],
    [ 0,  1, 253],
    [ 0,  1, 255],
    ...,
    [ 0,  0,  0],
    [ 1, 254,  1],
    [ 0, 255,  2]]], dtype=uint8)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Python,Opencv,PIL读取图像文件,Opencv,PIL读取图像

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。