圆月山庄资源网 Design By www.vgjia.com
反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积
这里通过一段程序来演示基本的backward操作以及需要注意的地方
> import torch > from torch.autograd import Variable > x = Variable(torch.ones(2,2), requires_grad=True) > y = x + 2 > y.grad_fn Out[6]: <torch.autograd.function.AddConstantBackward at 0x229e7068138> > y.grad > z = y*y*3 > z.grad_fn Out[9]: <torch.autograd.function.MulConstantBackward at 0x229e86cc5e8> > z Out[10]: Variable containing: 27 27 27 27 [torch.FloatTensor of size 2x2] > out = z.mean() > out.grad_fn Out[12]: <torch.autograd.function.MeanBackward at 0x229e86cc408> > out.backward() # 这里因为out为scalar标量,所以参数不需要填写 > x.grad Out[19]: Variable containing: 4.5000 4.5000 4.5000 4.5000 [torch.FloatTensor of size 2x2] > out # out为标量 Out[20]: Variable containing: 27 [torch.FloatTensor of size 1] > x = Variable(torch.Tensor([2,2,2]), requires_grad=True) > y = x*2 > y Out[52]: Variable containing: 4 4 4 [torch.FloatTensor of size 3] > y.backward() # 因为y输出为非标量,求向量间元素的梯度需要对所求的元素进行标注,用相同长度的序列进行标注 Traceback (most recent call last): File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-53-95acac9c3254>", line 1, in <module> y.backward() File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\variable.py", line 156, in backward torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables) File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 86, in backward grad_variables, create_graph = _make_grads(variables, grad_variables, create_graph) File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 34, in _make_grads raise RuntimeError("grad can be implicitly created only for scalar outputs") RuntimeError: grad can be implicitly created only for scalar outputs > y.backward(torch.FloatTensor([0.1, 1, 10])) > x.grad #注意这里的0.1,1.10为梯度求值比例 Out[55]: Variable containing: 0.2000 2.0000 20.0000 [torch.FloatTensor of size 3] > y.backward(torch.FloatTensor([0.1, 1, 10])) > x.grad # 梯度累积 Out[57]: Variable containing: 0.4000 4.0000 40.0000 [torch.FloatTensor of size 3] > x.grad.data.zero_() # 梯度累积进行清零 Out[60]: 0 0 0 [torch.FloatTensor of size 3] > x.grad # 累积为空 Out[61]: Variable containing: 0 0 0 [torch.FloatTensor of size 3] > y.backward(torch.FloatTensor([0.1, 1, 10])) > x.grad Out[63]: Variable containing: 0.2000 2.0000 20.0000 [torch.FloatTensor of size 3]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2024年11月03日
2024年11月03日
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]