在神经网络训练中,我们常常需要画出loss function的变化图,log日志里会显示每一次迭代的loss function的值,于是我们先把log日志保存为log.txt文档,再利用这个文档来画图。
1,先来产生一个log日志。
import mxnet as mx import numpy as np import os import logging logging.getLogger().setLevel(logging.DEBUG) # Training data logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存为log.txt train_data = np.random.uniform(0, 1, [100, 2]) train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)]) batch_size = 1 num_epoch=5 # Evaluation Data eval_data = np.array([[7,2],[6,10],[12,2]]) eval_label = np.array([11,26,16]) train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label') eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False) X = mx.sym.Variable('data') Y = mx.sym.Variable('lin_reg_label') fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1) lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro") model = mx.mod.Module( symbol = lro , data_names=['data'], label_names = ['lin_reg_label'] # network structure ) model.fit(train_iter, eval_iter, optimizer_params={'learning_rate':0.005, 'momentum': 0.9}, num_epoch=20, eval_metric='mse',) model.predict(eval_iter).asnumpy() metric = mx.metric.MSE() model.score(eval_iter, metric)
上面的代码中logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存为log.txt 就是把log日志保存为log.txt文件。
2,log.txt文档如下。
INFO:root:Epoch[0] Train-mse=0.470638 INFO:root:Epoch[0] Time cost=0.047 INFO:root:Epoch[0] Validation-mse=73.642301 INFO:root:Epoch[1] Train-mse=0.082987 INFO:root:Epoch[1] Time cost=0.047 INFO:root:Epoch[1] Validation-mse=41.625072 INFO:root:Epoch[2] Train-mse=0.044817 INFO:root:Epoch[2] Time cost=0.063 INFO:root:Epoch[2] Validation-mse=23.743375 INFO:root:Epoch[3] Train-mse=0.024459 INFO:root:Epoch[3] Time cost=0.063 INFO:root:Epoch[3] Validation-mse=13.511120 INFO:root:Epoch[4] Train-mse=0.013431 INFO:root:Epoch[4] Time cost=0.063 INFO:root:Epoch[4] Validation-mse=7.670062 INFO:root:Epoch[5] Train-mse=0.007408 INFO:root:Epoch[5] Time cost=0.063 INFO:root:Epoch[5] Validation-mse=4.344374 INFO:root:Epoch[6] Train-mse=0.004099 INFO:root:Epoch[6] Time cost=0.063 INFO:root:Epoch[6] Validation-mse=2.455608 INFO:root:Epoch[7] Train-mse=0.002274 INFO:root:Epoch[7] Time cost=0.062 INFO:root:Epoch[7] Validation-mse=1.385449 INFO:root:Epoch[8] Train-mse=0.001263 INFO:root:Epoch[8] Time cost=0.063 INFO:root:Epoch[8] Validation-mse=0.780387 INFO:root:Epoch[9] Train-mse=0.000703 INFO:root:Epoch[9] Time cost=0.063 INFO:root:Epoch[9] Validation-mse=0.438943 INFO:root:Epoch[10] Train-mse=0.000391 INFO:root:Epoch[10] Time cost=0.125 INFO:root:Epoch[10] Validation-mse=0.246581 INFO:root:Epoch[11] Train-mse=0.000218 INFO:root:Epoch[11] Time cost=0.047 INFO:root:Epoch[11] Validation-mse=0.138368 INFO:root:Epoch[12] Train-mse=0.000121 INFO:root:Epoch[12] Time cost=0.047 INFO:root:Epoch[12] Validation-mse=0.077573 INFO:root:Epoch[13] Train-mse=0.000068 INFO:root:Epoch[13] Time cost=0.063 INFO:root:Epoch[13] Validation-mse=0.043454 INFO:root:Epoch[14] Train-mse=0.000038 INFO:root:Epoch[14] Time cost=0.063 INFO:root:Epoch[14] Validation-mse=0.024325 INFO:root:Epoch[15] Train-mse=0.000021 INFO:root:Epoch[15] Time cost=0.063 INFO:root:Epoch[15] Validation-mse=0.013609 INFO:root:Epoch[16] Train-mse=0.000012 INFO:root:Epoch[16] Time cost=0.063 INFO:root:Epoch[16] Validation-mse=0.007610 INFO:root:Epoch[17] Train-mse=0.000007 INFO:root:Epoch[17] Time cost=0.063 INFO:root:Epoch[17] Validation-mse=0.004253 INFO:root:Epoch[18] Train-mse=0.000004 INFO:root:Epoch[18] Time cost=0.063 INFO:root:Epoch[18] Validation-mse=0.002376 INFO:root:Epoch[19] Train-mse=0.000002 INFO:root:Epoch[19] Time cost=0.063 INFO:root:Epoch[19] Validation-mse=0.001327
3,利用log.txt文件来画图。
import re import matplotlib.pyplot as plt import numpy as np def main(): file = open('log.txt','r') list = [] # search the line including accuracy for line in file: m=re.search('Train-mse', line) if m: n=re.search('[0]\.[0-9]+', line) # 正则表达式 if n is not None: list.append(n.group()) # 提取精度数字 file.close() plt.plot(list, 'go') plt.plot(list, 'r') plt.xlabel('count') plt.ylabel('accuracy') plt.title('Accuracy') plt.show() if __name__ == '__main__': main()
以上这篇python保存log日志,实现用log日志来画图就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 明达年度发烧碟MasterSuperiorAudiophile2021[DSF]
- 英文DJ 《致命的温柔》24K德国HD金碟DTS 2CD[WAV+分轨][1.7G]
- 张学友1997《不老的传说》宝丽金首版 [WAV+CUE][971M]
- 张韶涵2024 《不负韶华》开盘母带[低速原抓WAV+CUE][1.1G]
- lol全球总决赛lcs三号种子是谁 S14全球总决赛lcs三号种子队伍介绍
- lol全球总决赛lck三号种子是谁 S14全球总决赛lck三号种子队伍
- 群星.2005-三里屯音乐之男孩女孩的情人节【太合麦田】【WAV+CUE】
- 崔健.2005-给你一点颜色【东西音乐】【WAV+CUE】
- 南台湾小姑娘.1998-心爱,等一下【大旗】【WAV+CUE】
- 【新世纪】群星-美丽人生(CestLaVie)(6CD)[WAV+CUE]
- ProteanQuartet-Tempusomniavincit(2024)[24-WAV]
- SirEdwardElgarconductsElgar[FLAC+CUE]
- 田震《20世纪中华歌坛名人百集珍藏版》[WAV+CUE][1G]
- BEYOND《大地》24K金蝶限量编号[低速原抓WAV+CUE][986M]
- 陈奕迅《准备中 SACD》[日本限量版] [WAV+CUE][1.2G]