圆月山庄资源网 Design By www.vgjia.com

数字滤波分为 IIR 滤波,和FIR 滤波。

FIR 滤波:

import scipy.signal as signal
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt
import matplotlib
from scipy import signal
b = signal.firwin(80, 0.5, window=('kaiser', 8))
w, h = signal.freqz(b)
 
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
ax1.set_title('Digital filter frequency response')
 
ax1.plot(w, 20 * np.log10(abs(h)), 'b')
ax1.set_ylabel('Amplitude [dB]', color='b')
ax1.set_xlabel('Frequency [rad/sample]')
 
ax2 = ax1.twinx()
angles = np.unwrap(np.angle(h))
ax2.plot(w, angles, 'g')
ax2.set_ylabel('Angle (radians)', color='g')
ax2.grid()
ax2.axis('tight')
plt.show()

运行结果:

python 经典数字滤波实例

IIR 滤波器:

from scipy import signal
import matplotlib.pyplot as plt
import matplotlib.ticker
import numpy as np
# 蓝色的是频谱图,绿色的是相位图
wp = 0.2
ws = 0.3
gpass = 1
gstop = 40
system = signal.iirdesign(wp, ws, gpass, gstop)
w, h = signal.freqz(*system)
fig, ax1 = plt.subplots()
ax1.set_title('Digital filter frequency response')
ax1.plot(w, 20 * np.log10(abs(h)), 'b')
ax1.set_ylabel('Amplitude [dB]', color='b')
ax1.set_xlabel('Frequency [rad/sample]')
ax1.grid()
ax1.set_ylim([-110, 10])
 
nticks = 8
ax1.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))
 
plt.show()

运行结果:

python 经典数字滤波实例

IIR 滤波器中cheyb2 滤波器的运用

from  scipy import signal
import matplotlib.pyplot as plt
import numpy as np
b, a = signal.cheby2(4, 40, 100, 'low', analog=True)
w, h = signal.freqs(b, a)
plt.semilogx(w, 20 * np.log10(abs(h)))#用于绘制折线图,两个函数的 x 轴、y 轴分别是指数型的。
#plt.plot(w, 20 * np.log10(abs(h)))
plt.title('Chebyshev Type II frequency response (rs=40)')
plt.xlabel('Frequency [radians / second]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)#  not sure
plt.grid(which='both', axis='both')
 
t = np.linspace(0, 1, 1000, False) # 1 second
sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(t, sig)
ax1.set_title('10 Hz and 20 Hz sinusoids')
ax1.axis([0, 1, -2, 2])
 
sos = signal.cheby2(12, 20, 17, 'hp', fs=1000, output='sos')
filtered = signal.sosfilt(sos, sig)
ax2.plot(t, filtered)
ax2.set_title('After 17 Hz high-pass filter')
ax2.axis([0, 1, -2, 2])
ax2.set_xlabel('Time [seconds]')
 
plt.show()

python 经典数字滤波实例

python 经典数字滤波实例

以上这篇python 经典数字滤波实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,数字滤波

圆月山庄资源网 Design By www.vgjia.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
圆月山庄资源网 Design By www.vgjia.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。